- 56.66 KB
- 52页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'11水工建筑物荷载设计规范中华人民共和国行业标准水工建筑物荷载设计规范前言本规范是根据1990年原能源部、水利部水利水电规划设计总院“(90)水规字11号”文件的安排组织制订的。其目的在于统一水利水电工程结构设计的作用(荷载)取值标准,以利于按照GB50199—94水利水电工程可靠度设计统一标准》的原则和方法进行水工结构设计。本规范必须与按照GB50199—94水利水电工程结构可靠度设计统一标准》制订的其他水工结构设计规范配套使用。本规范中所列全部附录都是标准的附录。本规范由电力工业部水电水利规划设计总院提出、归口并负责解释。本规范的主编单位:电力工业部中南勘测设计研究院。参编单位有:电力工业部北京勘测设计研究院、西北勘测设计研究院、成都勘测设计研究院、华东勘测设计研究院,水利部上海勘测设计研究院、东北勘测设计研究院,中国水利水电科学研究院,南京水利科学研究院。本规范的主要起草人:梁文治、家常春、苗琴生、张学易段乐斋、周芙、黄东军、范明桥、刘文灏、陈厚群、席与光卢兴良、薛瑞宝、赵在望、岳耀真、吕祖伤、潘王华、刘蕴供吴孝仁、侯顺载、据常忻、王鉴义、汤书明、聂广明、徐伯孟潘玉喜、唐政生、郦能惠、李启雄、黄淑萍。
1范围本规范适用于各类水工建筑物的结构设计。12引用标准下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。GB50199—94水利水电工程结构可靠度设计统一标准GBJg—87建筑物结构荷载规范GBJ145—90土的分类标准DL5073—1997水工建筑物抗震设计规范DL/T5058—1996水电站调压室设计规范DL/T5082一1998水工建筑物抗冰冻设计规范23总则3.0.1为了统一水工结构设计的作用取值标准,使设计符合安全适用、经济合理、技术先进的要求,特制订本规范。3.0.2本规范是根据GB50199—94水利水电i程结构可靠度设计统一标准》规定的原则制定的。3.0.3本规范未予规定的其他作用,应按照各类水工结构设计规范的规定确定。3.0.4当水工结构设计引用与公路、航运及港口工程等有关的作用
时,应根据各部门设计规范的规定经具体分析后确定。34565作用分类和作用效应组合5.1作用分类及作用代表值5.1.1结构上的作用,可按作用随时间的变异分为下列三类:(1)永久作用;(2)可变作用;(3)偶然作用。水工结构主要作用按随时间变异的分类可按附录A采用。5.1.2水工结构设计时,对不同作用应采用不同的代表值。永久作用和可变作用的代表值采用作用的标准值;偶然作用的代表值,除本规范已有规定者外,可按有关标准的规定,或根据观测资料结合工程经验综合分析确定。5.1.3本规范所列永久作用、可变作用的标准值和偶然作用的代表值以及作用的分项系数,均应按各章中的规定采用。5.2作用效应组合5.2.1水工结构设计时,应根据不同设计状况下可能同时出现的作用,按承载能力极限状态和正常使用极限状态分别进行作用效应组合,并采用各自最不利的组合进行设计。
5.2.2当结构按承载能力极限状态设计时,对应于持久设计状况和短暂设计状况应采用基本组合;偶然设计状况应采用偶然组合。偶然组合中应只考虑一种偶然作用。5.2.3承载能力极限状态的基本组合应采用下列设计表认式,7在偶然组合中,偶然作用的分项系数应采用1.0;与偶然作用同时出现的某些可变作用,可对其标准值作适当折减。5.2.4当结构按正常使用极限状态设计时,应根据结构设计要求分别采用作用的短期效应组合和长期效应组合,并可采用下列设计表达式:(1)短期效应组合:86建筑物自重及永久设备自重6.1建筑物自重6.1.1水工建筑物(结构)的自重标准值,可按结构设计尺寸与一其材料重度计算确定。水工建筑物常用材料的重度可参照附录B中表B1采用。96.1.2大体积混凝土结构的材料重度,应根据选定的混凝土配合比通过试验确定。当无试验资料时,可采用23.5~24.okN/m3,或根据骨料重度、粒径按附录B中表BZ采用。6.1.3土坝(含土坝和堆石坝的防渗上体)的材料重度,应根据设计
计算内容和土体部位的不同,分别采用湿重度、饱和重度或浮重度,其数值可根据压实干重度、含水量和孔隙率换算得出。堆石坝的材料重度应根据堆石部位的不同,分别采用压实干重度或浮重度。土石坝土体和堆石体的压实干重度应由压实试验确定。中、小型土石坝在初步计算缺乏资料时,其压实干重度可按附录B表B3采用,但最终应根据试验资料予以修正。6.1.4建筑物(结构)自重的作用分项系数应按表6.1.4采用。106.2永久设备自重6.2.1永久设备的自重标准值采用设备的铭牌重量。6.2.2永久设备自重的作用分项系数,当其作用效应对结构不利时应采用1.05,有利时应采用0.95。117静水压力7.1一般规定7.1.1垂直作用于建筑物(结构)表面某点处的静水压强应按下式计算,泥沙河流应根据实际情况确定。7.1.2应区分水工建筑物不同的设计状况,分别按持久设计状况、短暂设计状况和偶然设计状况下的计算水位确定相应的静水压力代表值。7.1.3静水压力(包括外水压力)的作用分项系数应采用1.0。7.2枢纽建筑物的静水压力
7.2.1坝、水闸等挡水建筑物和河床式水电站厂房在运用期静水压力代表值的计算水位应按下列规定确定:(1)持久设计状况,上游采用水库的正常蓄水位(或防洪高水位),下游采用可能出现的不利水位;(2)偶然设计状况,上游采用水库的校核洪水位,下游采用水库在该水位泄洪时的水位。(3)短暂设计状况,采用设计预定该建筑物在检修期的上、下游水位。注:与地震作用组合时的静水压力代表值,其计算水位应按18.3的有关规定确定。7.2.l所规定的上游计算水位采用。7.2.2对于泄水建筑物的首部挡水结构,其静水压力代表值的计算水位可按。7。2。1所规定的上游计算水位采用。127.2.3坝后式和岸边式水电站厂房静水压力代表值的下游计算水位,可按下列规定确定;(1)持久设计状况,采用厂房的设计洪水位。(2)偶然设计状况,采用厂房的校核洪水位。(3)厂房在施工、机组检修等短暂设计状况下的计算水位,按SD335—89K水电站厂房设计规范》的有关规定确定。7.2.4
水工隧洞、压力管道及调压室等建筑物在各种设计状况下静水压力代表值的计算水位,应根据水库特征水位结合建筑物具体运用条件,按照各类水工结构设计规范的规定确定。7.2.5临时性水工建筑物以及坝体在施工期渡汛时静水压力代表值的计算水位,应根据有关设计规范所规定的洪水标准计算确定。7.3水工闸门的静水压力7.3.1水工闸门在各种设计状况下静水压力代表值的计算水位,应根据闸门的不同运用条件确定。7.3.2设置在发电、供水、泄水和排沙等建筑物进水口(或泄水道内)的工作闸门或事故闸门,其持久设计状况和偶然设计状况下静水压力代表值的计算水位,应按7.2.1所规定的上游计算水位采用。对于溢洪道露顶式工作闸门,可不考虑偶然设计状况。7.3.3设置在船闸上闸首的工作闸门。持久设计状况下静水压力代表值的计算水位应采用正常蓄水位或最高通航水位;偶然设计状况应采用校核洪水位或最高挡水位。7.3.4设置在泄水道、船闸等建筑物以及水电站引水道的进水口、尾水管出口等处的上、下游检修闸门,其短暂设计状况下静水压力代表值的计算水位,应采用设计预定该建筑物检修时的上、下游水位。7.3.5导流底孔和其他临时性挡水建筑物的闸门,应根据其临时挡水的洪水标准以及闸门的运用条件,确定相应短暂设计状况下静水压力代表值的计算水位。137.4管道及地下结构的外水压力7.4.1
混凝土坝坝内钢管放空时各计算断面的外水压力标准值可按以下规定确定,处的外水压力为零,其间压力沿管轴线接直线规律分布;(2)起始断面作用水头H的计算水位宜采用正常蓄水位,折减系数a可根据钢管外围的防渗、排水及接触灌浆等情况采用1.0~0.5。7.4.2计算地下结构外水压力标准值时所采用的设计地下水位线,应根据实测资料,结合水文地质条件和防渗排水效果,并考虑工程投人运用后可能引起的地下水位变化等因素,经综合分析确定。7.4.3作用于混凝土衬砌有压隧洞的外水压强标准值可按下式计算:7.4.4当无压隧洞和地下洞室设置排水措施时,可根据排水效和排水设施的可靠性对计算外水压力标准值的作用水头作适当折减,其折减值可采用工程类比或渗流计算分析确定。7.4.5对于有钢板衬砌的压力隧洞,可按下列情况确定作用于钢管的外水压力标准值的作用水头。(1)对于埋深较浅且未设排水措施的压力隧洞,其外水压力。作用水头宜接设计地下水位与管道中心线之间的高差确定。(2)当压力隧洞的顶部或外侧设置排水洞时,可在考虑岩层性能及排水效果的基础上,根据工程类比或渗流计算分析,对排水洞以上的外水压力作用水头作适当折减。14(3)当钢衬外围设置排水管时,可根据排水措施的长期有效性,采用工程类比法或渗流计算,综合分析确定外水压力作用水头。158扬压力
8.1一般规定8.1.1混凝土坝、水闸和水电站厂房等建筑物的扬压力,应按垂直作用于计算截面全部截面积上的分布力计算。8.1.2作用于建筑物计算截面上的扬压力分布图形,应根据不同的水工结构型式,上下游计算水位,地基地质条件及防渗排水措施等情况确定。确定扬压力分布图形时的上下游计算水位,应与计算静水压力代表值的上下游计算水位一致。8.1.3计算截面上的扬压力代表值,应根据该截面上的扬压力分布图形计算确定。其中,矩形部分的合力为浮托力代表值,其余部分的合力为渗透压力代表值。对于在坝基设置抽排系统的情况,主排水孔之前的合力为扬压力代表值;主排水孔之后的合力为残余扬压力代表值。8.2混凝土坝的扬压力8.2.1岩基上各类混凝土坝坝底面的扬压力分布图形可按下列三种情况分别确定:16扬压力作用水头为HI下游处为H2其间以直线连接[见图8·2·1上述情况中,渗透压力强度系数。扬压力强度系数a1及残8.2.2坝体内部计算截面上的扬压力分布图形,当设有坝体排17水管时,可按图8.2.2
确定。其中排水管处的坝体内部渗透压力强度系数a3可按下列情况采用:(1)实体重力坝、拱坝及空腹重力坝的实体部位采用0.2。(2)宽缝重力坝、大头支墩坝的无宽缝部位采用0.2,有宽缝部位采用0.15。当未设坝体排水管时,上游坝面处扬压力作用水头为HI下游坝面处为,H2其间以直线连接188.2.3坝底面和坝体内部扬压力的作用分项系数应按下列情况采用:19(1)浮托力的作用分项系数均采用1.0。(2)渗透压力的作用分项系数,对实体重力坝采用1.2对宽缝重力坝、大头支墩坝、空腹重力坝以及拱坝采用1.1。(3)对于坝基下游设置抽排系统的情况,主排水孔之前扬压力的作用分项系数采用1.1主排水孔之后残余扬压力的作用分项系数采用1.2。8.2.4当坝前地基面设有粘土铺盖,或多泥沙河流的坝前地基面上能形成淤沙铺盖时,可依据工程经验对坝题及排水孔处的扬压力作用水头作适当折减。8.2.5作用于护坦底面的扬压力分布图形,可根据相应设计状况下坝趾与护坦首部连接处的扬压力作用水头,以及护坦下游水位确定。若底部设置妥善的排水系统并具备检修条件且接缝间止水可靠时,可考虑排水对降低扬压力的影响。
8.3水闸的扬压力8.3.1岩基上水闸底面的扬压力分布图形,可按8.2中实体重力坝情况确定。8.3.2软基上水闸底面的扬压力分布图形,宜根据上下游计算水位,闸底板地下轮廓线的布置情况,地基土质分布及其渗透特性等条件分析确定。一般情况下,渗透压力可采用改进阻力系数法或流网法计算。改进阻力系数法见附录D。8.3.3软基上水闸两岸墩墙侧向渗透压力的分布图形可按下列情况确定:(1)当墙后土层的渗透系数小于地基渗透系数时,可近似地采用相应部位的闸底渗透压力分布图形.(2)当墙后土层的渗透系数大于地基渗透系数时,应按侧向绕流计算确定.(3)对于大型水闸,应经三向电拟试验或数值计算验证。8.3.4水闸扬压力的作用分项系数,对于浮托力应采用1.0.渗透压力可采用1.2。208.4水电站厂房和泵站厂房的扬压力8.4.1岩基上河床式水电站厂房、泵站厂房底面的扬压力分布图形,可按8.2中岩基上的实体重力坝情况确定;对于坝后式、岸边式水电站厂房,则参照岩基上实体重力坝情况具体分析确定。8.4.2
对于厂坝为整体连接,或所设置的永久性变形缝已经止水封闭的岩基上的坝后式水电站厂房,厂房底面的扬压力分布图形应与坝体共同考虑。8.4.3软基上河床式、岸边式水电站厂房以及泵站厂房底面的扬压力分布图形,可参照8.3中软基上的水闸情况确定。8.4.4水电站厂房和泵站厂房扬压力的作用分项系数,对于浮托力应采用1.0,渗透压力可采用1.2。219动水压力9.1一般规定9.1.1作用在水工建筑物过流面一定面积上的动水压力(包括时均压力和脉动压力),应按该面积上各点动水压强的合力计算。动水压力一般可只计及时均压力,但当水流脉动影响结构的安全或引起结构振动时,应计及脉动压力的影响。9.1.2计算动水压力时,应区分恒定流和非恒定流两种水流状态。对于恒定流,尚应区别渐变流或急变流等不同流态,并采用相应的方法计算。水电站压力水道系统内产生的水锤压力,应按有压管道的非恒定流计算。9.1.3对于重要的或体形复杂的水工建筑物,其动水压力宜通过模型试验测定并经综合分析确定。9.2渐变流时均压力9.2.1渐变流时均压强的代表值,可根据相应设计状况下的水流条件,通过计算或试验求得水面线后按下式计算(见图7.2.l):
229.3.4反弧段水流离心力的作用分项系数可采用1.l。9.4水流对尾槛的冲击力9.4.1水流对消力地尾槛的冲击力代表值可按下式计算:24平均流速;对于反弧鼻坎挑流,可取反派最低处的断面平均流速。9.5.3泄水建筑物不同部位的脉动压强系数可按表9.5.3-1及表9.5.3-2选用对于重要工程,宜根据专门试验确定。9.5.4脉动压力的作用分项系数应采用1.3。9.6水锤压力道(包括蜗壳、尾水管及压力尾水道)内产生的259.6.1当水电站水轮发电机组的负荷突然变化时,相应设计状况下压力水水锤压用数值积分等方法时,采用1.0当采用附录E中的解析公式计算时,对于冲击式水轮机可采用1.0对于反击式水轮机,应根据其转速经试验确定,当无试验数据时,混流式水轮机可采用1.2轴流式水轮机可采用l.4。9.6.2压力水道不同部位在持久设计状况(或偶然设计状况)下的水锤压力代表值,应按下列静水头和机组运行工况计算确定。(1
)上游压力水道(包括抽水蓄能电站上游压力水道),采用水库正常蓄水位(或校核洪水位)与厂房下游相应发电(或泄洪)尾水位之差,共一条压力水道的全部机组突然丢弃全部负荷.(2)下游压力水道,采用厂房下游设计洪水位(或校核洪水位)与相应上游水库水位之差,共一条下游压力水道的全部n台机组由(n—1)台增至n台,或全部机组由三分之二负荷突然增至满载。(3)抽水蓄能电站的下游压力水道,按下游水库设计洪水位(或校核洪水位)在水泵工况扬程最小抽水量最大时,共一条下游压力水道的全部机组突然断电,导叶全部拒动。(4)经分析论证后,认为不存在全部丢弃负荷全部导叶拒动的情况,亦可按机组部分丢弃负荷或部分导叶拒动考虑。9.6.3上、下游压力管道中各计算截面的水锤压力水头值可按下列公式计算。269.6.4上游压力水道末端采用的水锤压力升高值,应不小于正常蓄水位下压力水道静水头的10%。对于设置调压室的压力水道,应根据具体情况考虑调压室涌波对水锤压力的影响。9.6.5水锤压力的作用分项系数可采用1.1。2710地应力及围岩压力10.l一般规定10.1.1地下结构是由围岩及其加固措施构成的统一体。设计时应充分考虑围岩的自稳能力和承载能力。10.1.2
地下结构设计中所涉及的围岩作用,可根据岩体结构类型及其特征按下列情况分别考虑:(1)对于整体状、块状、中厚层至厚层状结构的围岩,岩体初始地应力及局部块体滑移为其主要作用;(2)对于薄层状及碎裂、散体结构的围岩,围岩压力为其主要作用。10.1.3围岩岩体的结构类型及其特征,应按国家标准《水利水电工程地质勘察规范》的有关规定确定。10.1.4岩体初始地应力及围岩压力的作用分项系数可采用1.0。10.2岩体初始地应力(场)10.2.1对于重要的地下工程,岩体初始地应力(场)宜根据现场实测资料,结合区域地质构造、地形地貌、地表剥蚀程度及岩体的力学性质等因素综合分析确定;当具有少量可用资料时,也可通过模拟计算或反演分析成果经综合分析确定。10.2.2当无实测资料时,仅符合下列条件之一者,可将岩体初始地应力场视为重力场,并按式(10.2.2-1)、式(10.2.2-2)算岩体地应力标准值。(1)工程区域内地震基本烈度小于6度;(2)岩体纵波波速小于2500m/s。(3)工程区域岩层平缓,未经受过较强烈的地质构造变动。2810.2.4根据式(10.2.2)、式(10.2.3)的计算结果,尚应结合工程经验及类比分析,确定岩体的初始地应力(场)。对于高地应力地区,宜通过现场实测取得地应力(场)资料。
10.3围岩压力10.3.1当洞室在开挖过程中,采取了锚喷支护或钢架支撑等施工加固措施,已使围岩处于基本稳定或已稳定的情况下,设计时宜少计或不计作用在永久支护结构上的围岩压力。10.3.2对于块状中厚层至厚层状结构的围岩,可根据围岩中不稳定块体的重力作用确定围岩压力标准值。10.3.3对于薄层状及碎裂散体结构的围岩,垂直均布压力标准值可按下式计算,并根据开挖后的实际情况讲行修正。293011土压力和淤沙压力11.l挡土建筑物的土压力11.1.1计算挡土建筑物(挡土墙)的士压力时,对于向外侧移动或转动的挡土结构,可按主动土压力计算;对于保持静止不动的挡土结构,可按静止土压力计算。11.1.2作用在单位长度挡土墙背上的主动土压力标准值可按下式计算;当墙背的坡角。大于临界值时,填土将产生第二破裂面(见图11.1.2-2),其主动土压力标准值应按作用于第二破裂面上31当填土表面有均布荷载时,可将荷载换算成等效的土层厚
度,计算作用于墙背的主动土压力标准值。此种情况下,作用于墙背上的主动土压力应按梯形分布。11.1.3对于墙背铅直、墙后填土表面水平的挡土墙,作用单位11.1.4主动土压力和静止士压力的作用分项系数应采用1.2。11.2上埋式埋管的上压力11.2.1作用在单位长度埋管上的垂直土压力标准值可按下式计算(见图11.2.l)。33作用效应对管体结构不利时应采用1.l,有利时应采用0.9。11.3淤沙压力11.3.1作用在坝、水闸等挡水建筑物单位长度上的水平淤沙压力标准值可按下式计算:当结构挡水面倾斜时,应计及竖向淤沙压力。11.3.2挡水建筑物前的泥沙淤积厚度,应根据河流水文泥沙特性和枢纽布置情况经计算确定;对于多泥沙河流上的工程,宜通过物理模型试验或数学模型计算,并结合已建类似工程的实测资料综合分析确定。11.3.3淤沙的浮重度和内摩擦角,一般可参照类似工程的实测资料分析确定;对于淤沙严重的工程宜通过试验确定。11.3.4淤沙压力的作用分项系数应采用1.2。
3412风荷载和雪荷载12.贝风荷载12.1.1垂直作用于建筑物表面上的风荷载标准值,应按下式计算:12.1.2基本风压应按GBJg一87《建筑结构荷载规范》中全国基本风压分布图采用,但不得小于0.25kN/m2。对于水工高耸结构,其基本风压可按全国基本风压图中的基本风压值乘以1.1后采用;对于特别重要和有特殊使用要求的结构或建筑物,则可乘以1.2后采用。12.1.3当建设地点的基本风压值在全国基本风压分布图上未给出时,其基本风压值可按下列方法确定:(1)可根据当地年最大风速资料,按照基本风压的定义通过统计分析确定,分析时应考虑样本数量的影响;(2)当地没有风速资料时,可根据附近地区规定的基本风压或长期资料,通过气象和地形条件的对比分析确定。无实测资料时。可按当地空旷平坦地面的基本雪正值乘以12后采用。12.2.4建筑物顶面的积雪分布系数,可参照GBJg—87规定的屋面积雪分布系数采用。12.2.5雪荷载的作用分项系数应采用1.3。3713冰压力和冻胀力13.1静冰压力
13.1.1冰层升温膨胀时,作用于坝面或其他宽长建筑物单位长13.1.2作用于独立墩柱上的静冰压力可按照式(13.2.2-1)计算。13.1.3静冰压力垂直作用于结构物前治,其作用点取冰面以下1/3冰厚处。13.1.4冰冻期冰层厚度内的冰压力与水压力不同时作用于建筑物。13.1.5静冰压力的作用分项系数应采用1.1。13.2动冰压力13.2.l作用于铅直的坝面或其他宽长建筑物上的动冰压力标准值可按下式计算:3813.2.2作用于独立墩柱上的动冰压力标准值,可按下列情况计算确定:(1)作用于前沿铅直的三角形独立墩柱上的动冰压力,可分别按式(13.2.2-1)、式(13.2.2-2)计算冰块切人和撞击两种况下的冰压力,并取其中的小值:(2)作用于前沿铅宜的矩形、多边形或圆形独立墩柱上的动冰压力可按式(13.2.2-1)计算。13.2.3动冰压力的作用分项系数可采用l.1。3913.3冻胀力13.3.1
表面平整的混凝土桩、墩基础,在无竖向位移的条件下,作用于侧表面上的切向冻胀力标准值可按下式计算:13.3.2对于标准冻深大于0.5in地区的薄壁混凝上挡土墙,当墙前地面至墙后填土顶部的高差小于或等于5m、在无水平位移的条件下,作用于挡土墙的水平冻胀力可采用按图13.3.2所示的压强分布计算的合力为其标准值。图中最大单位水平冻胀力可按下式计算:4013.3.3对于标准冻深大于0.5in地区,墙前地面至墙后填土顶部的高差大于5m的薄壁挡土墙和其他型式的挡土墙,水平冻胀力的计算应经专门研究。13.3.4在标准冻深大于0.5in地区的水闸、涵洞和其他具有板型基础的建筑物,当基础埋深小于设计冻深时,作用在单块基础板底面上的竖向冻胀力标准值可按下式计算:414313.3.5水平冻胀力和土压力不同时作用于建筑物,设计时应取其中的大值进行荷载组合。13.3.6切向冻胀力、水平冻胀力及竖向冻胀力的作用分项系数均应采用1.1。4314浪压力14.1一般的规定14.1.1
本章适用于风浪对坝、水闸等挡水建筑物(不包括海堤、河堤)产生的浪压力的计算。14.1.2浪压力标准值一般可由波浪要素(波高、波长等)按14.2.14.3计算确定。对于1级挡水建筑物,当浪压力为主要荷载之一时,宜通过模型试验论证。14.1.3波浪要素可按附录G计算。其中计算风速的取值应遵循下列规定:(1)当浪压力参与作用基本组合时,采用重现期为50年的年最大风速;(2)当浪压力参与偶然组合时,采用多年平均年最大风速。14.1.4浪压力的作用分项系数应采用1.2。14.2直墙式挡水建筑物上的浪压力14.2.1作用于铅直迎水面建筑物上的浪压力,应根据建筑物迎水面前的水深,按以下三种波态分别计算:444514.3斜坡式挡水建筑物上的浪压力14.3.1对于1.5≤m≤5的混凝土整体式或装配式单坡护面板上的浪压力标准值,可按图14.3.1压力强度分布计算的合力确定。图中有关参数可按下列各项计算c4647
图14.3.1中波浪爬高风,可按附录G计算确定。14.3.2装配式斜坡护面板上的波浪反压力标准值,可按图14.3.2反压力强度分布计算的合力确定,其中波浪反压力强度产p按下式计算:14.3.3对于折坡或具有平台的复坡斜坡式挡水建筑物,其浪压力应通过专门研究确定。4815楼面及平台活荷载15.l水电站主厂房楼面活荷载15.1.1主厂房安装间、发电机层和水轮机层各层楼面,在机组安装、运行和检修期间由设备堆放、部件组装、搬运等引起的楼面局部荷载及集中荷载,均应按实际情况考虑。对于大型水电站,可按设备部件的实际堆放位置分区确定各区间的荷载值。15.1.2当缺乏资料时,主厂房各层楼面的均有活荷载标准值可按表15.1.2采用。15.2水电站副厂房楼面活荷载15.2.1生产副厂房各层楼面在安装、检修过程中可移动的集中荷载或局部荷载,均应按实际情况考虑。无设备区的操作荷载〔包括操作人员、一般工具和零星配件等)可按均布活荷载考虑,其标准值可采用3~4kN/平米。15.2.2当缺乏资料时,副厂房的楼面活荷载标准值可按照15.2.2采用。4915.3工作平台活荷载
15.3.1尾水平台活荷载按下列原则确定:(1)当尾水平台仅承受尾水闸门操作或检修荷载时,其活荷载标准值可采用10~20kN/m’(大型电站取大值);(2)当尾水平台兼作公路桥时,车辆荷载应按公路桥梁荷载标准确定,并可与闸门操作或检修荷载分区考虑;(3)当尾水平台布置有变压器时,应按实际情况考虑;50(4)施工期安放的起吊设备及临时堆放荷载,应根据工程实际情况确定。15.3.2进水口平台活荷载按下列原则确定:1)进水口承受闸门、启闭机及清污机等设备产生的集中或局部荷载,均应按实际情况考虑;(2)进水口平台兼作公路桥时,应按公路桥梁车辆荷载标准确定;(3)进水口平台在安装金属结构时需安放重型起吊设备者,应考虑施工期的临时荷载。15.4其他要求及作用分项系数15.4.1设计楼面(平台)的梁、墙、柱和基础时,应对楼面(平台)的活荷载标准值乘以0.8~0;85的折减系数。15.4.二当考虑搬运、装卸重物,车辆行驶和设备运转对楼面和梁的动力作用时,均应将活荷载乘以动力系数。动力系数可采用1.1~1.2。15.4.3楼面及平台活荷载的作用分项系数,一般情况下可采1.2;
对于安装间及发电机层楼面,当堆放设备的位置在安装、检修期间有严格控制并加垫术时,可采用1.05。5116桥机和门机荷载16.1桥机荷载16.1.1本节适用于作直线轨道运行或作曲线轨道运行的水电站厂房内的桥式吊车,以及在水工建筑物其他部位室内工作的桥式或台车式启闭机。16.1.2桥机荷载应按竖向荷载和水平荷载(包括纵向、横向水平荷载)分别进行计算。16.1.3桥机的竖向荷载标准值,可采用设计图样提供的最大轮”压,可采用桥机通用资料提供的参数按下列公式计算:(1)当用一台桥机吊物时,作用在一边轨道上的最大轮压:16.1.4纵向水平荷载标准值,可按作用在一边轨道上所有制动轮的最大轮压之和的5%采用。其作用点即制动轮与轨道的接触点,其方向与轨道方向一致。16.1.5横向水平荷载标准值,可按小车、吊物及吊具的重力之和的4%采用。该项荷载由两边轨道上的各轮平均传至轨顶,方向与轨道垂直,并应考虑正反两个作用方向。16.1.6当对桥机吊车梁进行强度计算时,“桥机竖向荷载应乘以动力系数,动力系数可采用1.05。16.1.7桥机竖向荷载、水平荷载的作用分项系数均应采用1.1。
16.2门机荷载16.2.1本节适用于作直线轨道运行或作曲线轨道运行的坝顶门机,也适用于厂房尾水平台上的门机及在水工建筑物其他部位室外工作的门机。16.2.2门机荷载应按竖向荷载和水平荷载(包括纵向、横向水平荷载)分别进行计算。16.2.3门机竖向荷载标准值,应采用设计图样提供的在不同运用工况下的轮压值。初步计算时,可采用门机通用资料提供的数据,但应根据门机的实际工作情况加以修正。16.2.4纵向水平荷载标准值,可按大车运行时作用在一边轨道上所有制动轮的最大轮压之和的8%采用。其作用点即制动轮与轨道的接触点,其方向与轨道方向一致。16.2.5门机横向水平荷载标准值,可按小车和吊物及吊具的重力之和的5%采用。该项荷载由两边轨道上的各轮平均传至轨顶,方向与轨道垂直,并应考虑正反两个作用方向。16.2.6当对门机承重梁进行强度计算时,门机竖向荷载应乘以动力系数,动力系数可采用1.05。16.2.7门机的竖向荷载、水平荷载的作用分项系数均应采用1.1。5317温度作用17.1一般规定17.1.1本章适用于计算混凝土结构的温度作用。该作用系指可
能出现且对该结构产生作用效应的温度变化(包括温升和温降)。17.1.2应根据结构特征,分别考虑结构在施工期和运行期的温度作用。17.1.3宜针对不同的结构型式及计算方法,按下述三种情况计算结构的温度作用:1)杆件结构。假定温度沿截面厚度方向呈线性分布,并以54(3)大体积混凝士结构和其他空间形状复杂的非杆件结构,应根据其温度边值条件,按连续介质热传导理论计算其温度场。温度作用即指其温度场的变化。17.1.4计算结构的温度作用时,应考虑以下因素:(1)结构所处环境的气温、水温、日照及基岩温度等边界条件,按17.2中有关条文确定。(2)与温度作用有关的混凝土热学特性指标,宜由试验研究确定。初步计算时,可按表17.14采用。17.1.5温度作用的作用分项系数应采用1.1。5517.2边界温度17.2.1结构物外界气温的年周期变化过程可用下式表示:17.2.2水库坝前水温,宜根据拟建水库的具体条件经专(研究确定。初步计算时,可采用附录H所提供的方法。17.2.3
坝下游水温,一般情况下可假定沿水深呈均匀分布。其年周期变化过程,当见水直接源于上游库水时可参照与之相应的坝前水温确定,否则可参照当地气温确定。17.2.4暴露在空气中并受日光直按照射的结构,应考虑日光辐射热的影响。一般可考虑辐射热引起结构表面的多年平均温度增56加2~4℃,多年平均温度年变幅增加l~2℃。对于大型工程,宜经专门研究确定。17.2.5坝基温度可假定在年内不随时间变化。其多年年平均温度可根据当地地温、库底水温及坝基渗流等条件分析确定。17.3温度作用标准值17.3.1厂房、进水塔等建筑物的构架在运行期的温度作用标准值可按下列公式计算:文确定。对温度作用比较敏感的重要结构,必要时应考虑气温月变幅的影响。17.3.2拱坝运行期的温度作用标准值可按附录J计算。17.3.3实体重力坝一般可不计及运行期的温度作用,但当坝体57接缝灌浆时的温度高于稳定温度时,坝体应力计算宜计及温度作用,其标准值可取坝体灌浆时的温度与稳定温度之差值。宽缝重力坝、空腹坝及支墩坝等在运行期的温度作用标准值,应取结构运行期最高(或最低)温度场与其准稳定温度场的年平均温度之差值。17.3.4
大体积混凝土结构施工期的温度作用标准值,应取结构稳定温度场与施工期最高温度场之差值。可采用下列计算表达式:17.3.5坝内引水管道周围混凝土运行期的温度作用标准值,可采用进水口处的多年月平均最低水温所确定的温度场与坝体(准)稳定温度场之差值。初期充水时的温度作用,可根据充水时的水温及环境温度条件分析确定。5818地震作用18.1一般规定18.1.1水利水电工程的抗震设防依据,一般情况下可采用{中国地震烈度区划图(1990)}确定的基本烈度、对于基本烈度为6度或6度以上地区且坝高超过200m或库容大于100X108m3的大型工程,以及基本烈度为7度或7度以上地区且坝高超过150m的大(1)型工程,其抗震设防依据应根据专门的地震危险性分析成果评定。18.1.2各类水工建筑物的设计地震烈度、设计地震加速度、工程抗震设防类别、场地类别的划分及地震作用效应的计算方法等,应按DL5073—1997水工建筑物抗震设计规范》的有关规定确定。18.1.3水工建筑物的地震作用,应包括建筑物自重以及其上的设备自重所产生的地震惯性力、地震动水压力和地震动土压力。18.1.4各类水工建筑物的地震作用,应按下列原则考虑:1)上石坝和混凝土重力坝的水平向地震作用,可只考虑顺河流方向的水平向地震作用;两岸陡坡上的重力坝坝段尚宜计人垂直河流方向的水平向地震作用;
(2)闸墩、进水塔。闸顶机架和其他两个主轴方向刚度接近的水工混凝土结构,应考虑结构两个主轴方向的水平向地震作用;(3)混凝土拱坝,应同时考虑顺河流方向和垂直河流方向的水平向地震作用;支墩坝沿垂直河流方向的水平向地震作用宜作专门研究;(4)当设计烈度为8、9度时,1、2级土石坝、重力坝等挡水建筑物和长悬臂、大跨度及高耸的水工混凝士结构,应同时计人水平向和竖向地震作用;(5)严重不对称或空腹等特殊型式的拱坝,以及设计烈度为8、9度的1、2级双曲拱坝,竖向地震作用直作专门研究。5918.2设计地震加速度及设计反应谱18.2.1按《中国地震烈度区划图(1990)》确定基本烈度时,水平向设计地震加速度代表值ah应按表18.2.l采用3竖向设计地18.2.2专门进行地震危险性分析的工程,设计地震烈度及设计地震加速度的代表值,对于1级挡水建筑物,应按100年基准期内超越概率0.02确定;对于非挡水建筑物,应按50年基准期内超越概率0.05确定。18.2.3基岩面下50m及其以下的地下结构,水平向设计地震加速度代表值可按18.2.1或18.2.2规定值的1/2采用;基岩面下不足50m处的水平向设计地震加速度代表值,可按深度线性插值。60建筑物类型按表18.2.4-1采用,其下限值Bmin应不小于B20%;特征周期Tg应根据场地类别按表18.2.4-2采用,对于设计
18.3地震作用的水库计算水位18.3.1水工建筑物抗震计算时的水库计算水位可采用正常蓄水位;对于多年调节水库,经论证后可采用低于正常蓄水位的上游水位。18.3.2对于士坝和堆石坝上游坝坡的抗震稳定性计算,应根据运用条件选用对坝坡抗震稳定最不利的常遇水位;水库水位降落时宜采用常遇的水位降落幅值。18.3.3重要的混凝土拱坝和水闸,宜补充水库常遇低水位时的抗震强度计算。6119灌浆压力19.0.1水工结构设计应考虑以下三种灌浆压力:(1)地下结构的混凝土衬砌顶拱与围岩之间的回填灌浆力;(2)钢村与外围混凝土之间的接触灌浆压力;(3)混凝土坝坝体施工缝的接缝灌浆压力。19.0.2回填灌浆压力、接触灌浆压力和接缝灌浆压力均属施工过程中出现的临时性可变作用,仅作为短暂设计状况计算的一种作用。19.0.3灌浆压力作用的标准值可采用设计规定的灌浆压力值,一般可按以下范围取值:(1)回填灌浆压力,0.2~0.4MPa(一序灌浆孔取小值,二序灌浆孔取大值);(2)接触灌浆压力,0.l~0.2MPa;(3)接缝灌浆压力,0.2~0.5MPa。
19.0.4对于回填灌浆和接触灌浆压力,可对其设计规定的灌浆压力值乘以二个小于1.0的面积系数作为标准值。面积系数的取值,应根据结构实际施工状况、灌浆施工的工序及方法、计算作用的分布简图等因素经分析确定。19.0.5灌浆压力的作用分项系数可采用1.3。62水工结构主要作用按随时间变异的分类A.0.1永久作用:(1)结构自重和永久设备自重;(2)土压力;(3)淤沙压力(有排沙设施时可列为可变作用);(4)地应力;(5)围岩压力;(6)预应力。A.0.2可变作用:(1)静水压力;(2)扬压力(包括渗透压力和浮托力);(3)动水压力(包括水流离心力、水流冲击力、脉动压力);(4)水锤压力;(5)浪压力;(6)外水压力;(7)风荷载;
(8)雪荷载;(9)冰压力(包括静冰压力和动冰压力);(10)冻胀力;(11)楼面(平台)活荷载;(12)桥机、门机荷载;(13)温度作用;(14)土壤孔隙水压力;(15)灌浆压力。63A.0.3偶然作用:(1)地震作用;(2)校校洪水位时的静水压力。64656668697071727475
76G.1.2风区长度(有效吹程)按下列情况确定:(1)当沿风向两侧的水域较宽广时,可采用计算点至对岸的直线距离;(2)当沿风向有局部缩窄巨缩窄处的宽度b小于12倍计算波长时,可采用5倍b为风区长度,同时不小于计算点至缩窄处的直线距离;(3)当沿风向两侧的水域较狭窄或水域形状不规则、或有岛屿等障碍物时,可自计算点逆风向做主射线与水域边界相交,然后在主射线两侧每隔7.5度做一条射线,分别与水域边界相交。如图GI所示,记G.1.3风区内的水域平均深度。一般可通过沿风向作出地形剖面图求得,其计算水位应与相应设计状况下的静水位一致。G.2.0波浪要素计算G.2.l宜根据拟建水库的具体条件,按下述三种情况计算波浪要素:(1)平原、滨海地区水库,宜按莆田试验站公式计算:79
平均波长、平均波周期与建筑物迎水面前水深的换算值也可由表G3查取。808182G.3波浪爬高计算G.3.1斜坡式建筑物累积频率为l%的波浪爬高可按下式计算:84H.0.4拟建水库水温年周期变化过程与气温年周期变化过程的相位差,可根据水库特性分别按下列情况确定。8586878889本规范用词说明K.0.1为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明如下:(1)表示很严格,非这样做不可的:正面词采用“必须”;反面词采用“严禁”。(2)表示严格,在正常情况下均应这样做的:正面词采用“应”;反面词采用“不应”或“不得”。
(3)对表示允许稍有选择,在条件许可时首先应这样做的:正面词采用“宜”或“可”;反面词采用“不宜”。K.0.2条文中指定应按其他有关标准、规范执行时,写法为“应符合—?·的规定”;非必须按所指定的标准、规范或规定执行时,写法为“可参照—?·。”90水工建筑物荷载设计规范条文说明主编单位:电力工业部中南勘测设计研究院批准部门:中华人民共和国电力工业部中国电力出版1998北京92933总则3.0.1长期以来,水工结构设计的作用(荷载)取值一般均由各类水工结构设计规范分别做出规定,缺乏统一的取值标准和方法。按照GB50199—94(水利水电工程结构可靠度设计统一标准》(以下简称《水工统标则的要求,本规范对适用于水工建筑物设计的作用取值标准作出了统一规定。
《水工统标》是制订各类水工结构设计规范应共同遵守的准则。本规范第5章基本上陈述了该标准中第4章及第7章的有关规定,并在以后各章中对各种作用及其分项系数的取值作出了具体规定。3.0.2结构上的作用,通常是指对结构产生效应(内力、变形等)的各种原因的总称,并可分类为直接作用和间接作用。直接作用是指直接施加在结构上的集中力或分布力,也可称为“荷载”;间接作用则是指使结构产生外加变形或约束变形的原因,如地震、温度作用等。长期以来,工程界习惯于将两类作用不加区分,均称为“荷载”。为使规范名称简化和照顾习惯用语起见,本规范仍定名为《水工建筑物荷载设计规范}},但实际上包括了直接、间接两类作用。3.0.3水工建筑物卜的作用项目繁多,受客观条件的限制,本规范不可能对所有的作用进行全面研究并作出相应规定,仅涉及水工结构设计中常遇的一些主要作用。至于某些建筑物(结构)上的特殊作用、或本规范未列人的其他作用,如结构预应力、土壤孔隙水压力及钢结构焊接变形作用等,则可由相应的水工结构设计规范根据需要作出规定。3.0.4公路、航运及港工等部门的设计规范,其作用(荷载)取值的原则和方法不一定与本规范一致,因此引用其中的作用(荷载)值时,应结合水工结构的特点,对有关作用及其分项系数的取值进行具体分析,做到与本规范配套使用。945作用分类和作用效应组台5.1作用分类及作用代表值5.1.1
结构上的各种作用,当在时间及空间上相互独立时,则每一种作用均可按单独的作用考虑、《水工统标》对作用采用三种分类方式,即按作用随时间的变异、随空间位置的变异(固定或可动)和作用对结构的反应特点(静态或动态)进行分类、其中,按作用随时间的变异性分类是最主要的分类,因为它直接关系到作用变量概率模型的选择,某些作用的取值也与其持续时间的长短有关。本规范根据《水工统标》将作用随时间的变异分为下列三类:(1)永久作用:在设计基准期内量值不随时间变化,或其变化与平均值相比可以忽略不计的作用;(2)可变作用:在设计基准期内量值随时间变化,且其变化与平均值相比不可忽略的作用;(3)偶然作用:在设计基准期内出现概率很小,一旦出现其量值很大且持续时间很短的作用。附录A《水工结构主要作用按随时间变异的分类》,原则上是按照《水工统标》附录D列出的。5.1.2采用分项系数极限状态设计方法时,设计表达式中作用变量所采用的值,称为作用代表值。(水工统标》规定:永久作用和可变作用的代表值应采用作用的标准值,偶然作用的代表值按有关规范确定。《水工统标》对作用标准值的取值原则和方法作出了具体规定。本规范在确定各种永久作用和可变作用的标准值时,遵循了这些规定。至于水工结构设计中的两项主要偶然作用——校核洪水位时的静水压力及地震作用的代表值,本规范在有关章节中分别做出了规定。95
5.2作用效应组合5.2.1当整个结构(包括地基和围岩)或结构的一部分超过某一特定状态而不能满足设计规定的功能要求时,称该特定状态为结构相应于该功能的极限状态。从工程结构设计的实际需要出发,极限状态可划分为“承载能力极限状态”和“正常使用极限状态”两类。对于结构的承载能力极限状态,一般是以结构或结构构件达到最大承载能力或不适宜于继续承载变形为依据;对于正常使用极限状态,则是以结构或结构构件达到正常使用或耐久性要求的某一功能限值为依据。作用对结构所产生的内力和变形,如轴力。弯矩、剪力、位移、挠度和裂缝等统称为“作用效应”,应由结构分析确定。根据结构在施工、安装、运行和检修等不同阶段可能出现的不同结构、作用体系和环境条件等,结构设计状况可分为下列三种:(1)持久状况:在结构正常使用过程中一定出现且持续期很长,一般与结构设计基准期为同一数量级的设计状况;(2)短暂状况:在结构施工(安装)、检修或使用过程中短暂出现的设计状况;(3)偶然状况:在结构使用过程中出现概率很小、持续期很短的设计状况。
上述三种设计状况,不仅作用的大小和持续时间可能不同,而且结构的构成、型式和支承传力条件以及结构材料性能也可能不同。因此,设计时必须首先区分结构的设计状况,继而按照两类不同的极限状态分别对可能同时出现的各种作用进行作用效应组合,以求得结构总的作用效应。由于作用(效应)组合可能有多种情况,因此应在所有可能的组合中,取最不利的组合作为该极限状态设计的依据。5.2.2《水工统标》规定,对持久状况、短暂状况和偶然状况均应按承载能力极限状态进行设计。其中,持久状况和短暂状况下96的作用效应组合称为基本组合,它仅考虑永久作用与可变作用的效应组合;偶然状况下的作用效应组合称为偶然组合,它是永久作用、可变作用与一种偶然作用的效应组合。由于偶然作用在设计基准期内出现的概率很小,两种偶然作用同时出现的概率必然更小,因此在偶然组合中只考虑一种偶然作用。如校核洪水位时的静水压力就不应与地震作用同时参与组合。5.2.3在分项系数极限状态设计表达式中;《水工统标》采用了考虑工程结构的安全级别、设计状况、作用和材料性能的变异性以及计算模式不定性等因素,且与目标可靠指标相关联的五种分项系数,即:或构件应有不同的可靠度水平,对应于1、2、3三种结构安全级别,分别采用1.1、1.0和0.9;变异,但不反映由施加于结构上的作用换算成作用效应的计算不定性;出;其余3种分项系数均由各类水工结构设计规范作出具体规定。在偶然组合中,参与组合的可变作用一般情况下均采用其标准值。但考虑到某些可变作用与偶然作用同时出现的概率较小,因此本条依据《水工统标》作出了“与偶然作用同时出现的某些可变作用,可对其标准值作适当折减”的规定。例如,对于校核洪
97水位下的液压力,本规范规定,其计算风速采用多年平均年最大风速,即是对持久、短暂设计状况下50年重现期计算风速的一种折减。5.2.4根据可变作用在结构上总持续期的长短,对正常使用极限状态应考虑长期、短期两种作用效应组合情况。可变作用的短期作用效应与永久作用效应的组合称为短期效应组合;可变作用的长期作用效应与永久作用效应的组合则称为长期效应组合、短期效应组合中的可变作用可直接采用其标准值;长期效应组合中的可变作用则应将其标准值乘以小于1.0的长期组合系数P,作为经常出现的可变作用值参与长期效应组合。长期组合系数月的确定方法,已在《水工统标》附录F中给出,并由各类水工结构设计规范作出具体规定。对于正常使用极限状态,《水工统标)}尚规定,一般应按相应于持久设计状况的长期组合和短期组合设计,根据需要也可考虑相应于短暂设计状况的短期组合。在两种效应组合计算时,各个永久作用和可变作用的作用分项系数均可采用1.0。986建筑物自重及永久设备自重6.1建筑物自重6.1.1附录表BI系参照GBJg—87建筑结构荷载规范}}和《港口工程技术规范》(1987)中有关的材料重度,并根据水利水电工程有关资料进行了修正补充。6.1.2本规范编制过程中,共收集了国内外52个水利水电工程
(其中国内25个工程)的大体积常态混凝土、碾压混凝土和沥青混凝士的重度实测资料。常态混凝土中部分为钻孔取芯样实测重度,其他为机口取样实测重度;碾压混凝土为核子密度仪现场测定的重度;沥青混凝土为实验室测定的重度。大量数理统计分析结果表明,级配相同、施工合格的常态混凝土和碾压混凝土可采用相同的重度值。大体积混凝土的重度服从正态分布,对80%的工程而言,变异系数为0.005~0.1。根据统计分析结果,并参考国内外一些比较成熟的成果,规范列出了附录表B2供设计选用。通过试验确定混凝土的重度时,参照《水工统标》5.2.2之规定,可按其概率分布的0.2分位值取值。6.1.3本规范编制过程中,共收集了国内外100余座(其中国内30余座)土石坝的压实干重度资料,并进行了大量的数理统计工作。结果表明,土石坝的压实干重度服从正态分布,80%工程的变异系数为0.02~0.08。根据统计分析结果并参考国内外土石坝的设计和施工经验,规范列出了表B3供设计选用。由于影响土石坝干重度的因素较多,各具体工程的筑坝材料千变万化,附表B3只给出了一个大致的范围。在工程设计中,主要应以碾压试验为依据来确定上石坝的压实干重度。参照《水工统标》5.2.2之规定,其重度可按其概率分布的0.1分位值取值。附录表B3中土的分类,遵循了GBJ145——90(土的分类标准)。6.1.4水工大体积混凝土(包括常态混凝土和碾压混凝土)的重量,主要用以抵抗倾覆和滑移,一般对结构有利,且其几何尺99
寸的变异性相对较小,施工质量控制也为混凝土的重度提供了一定的保证,故取其分项系数为1.0。对于普通混凝土结构,GBJ68—84《建筑结构设计统一标准》编制组曾对17个省、市、自治区实测的2667块大型工民建钢筋混凝土预制构件的自重,以及20000m2以上找平层、垫层、保温层、防水层等约10000个测点的厚度和部分重度进行统计,结果表明,实测平均值为标准值的1.060倍。《港口工程结构可靠度设计统一标准》编制组曾对全国港口建设中混凝土和钢筋混凝土322个样本进行统计,结果表明,自重均值与标准值的比值为l.03。《水工统标》(送审稿)附件二《水工钢筋混凝土结构可靠度分析和分项系数确定》对永久作用(主要为水工钢筋混凝土自重)开展了研究,结果表明,普通水工混凝土结构的自重的作用分项系数采用1.05是恰当的。在土石坝的稳定分析中,土体或堆石部位不同,所起的作用也不同,滑弧上部的重量促使其滑动,而下部的重量则往往阻止其滑动。因此,很难从整体上区分土石坝的自重对结构有利或不利。但对于同一土体或堆石,其重度越大,说明其压实度越高,其抗剪性能也越好,对坝体稳定有利,故规定其分项系数采用1.0。1007静水压力7.1一般规定7.1.2
按照《水工统标》的规定,结构设计时应根据结构在施工和运用过程中的具体情况分别考虑持久、短暂、偶然三种设计状况。水工建筑物(结构)的施工、运行条件复杂,因而静水压力计算时,计算水位的确定必须与一定的设计状况相适应。相应于持久设计状况或施工、检修短暂设计状况下的静水压力属可变作用;在遇到校核洪水时的偶然设计状况下,静水压力则是一种偶然作用。为使条文简明起见,条文中将静水压力作为可变作用时的标准值及作为偶然作用时的代表值,统称为静水压力的代表值。7.1.3枢纽建筑物和闸门结构在不同设计状况下静水压力代表值的计算水位,一般为水库的特征水位,在建筑物运用过程中水位可以人为控制,故对静水压力的作用分项系数采用1.0。影响坝内管道和地下结构外水压力标准值取值的因素较为复杂,本规范基本上沿用现行水工结构设计规范中确定的原则和方法,并规定其作用分项系数采用1.0。7.2枢纽建筑物的静水压力7.2.1水工统标》4.3.3的规定,“对那些有传统的取值或有显著特征的,以及难以依靠统计资料按概率分布的分位值确定其标准值的可变作用,可采用定义形式规定其标准值”。枢纽建筑物的静水压力即属于这种情形。现行水工建筑物设计规范在考虑建筑物的静水压力时,均以水库特征水位为依据。因此,本规范原则上也以水库特征水位为依据,用以确定相应设计状况下枢纽建筑物的静水压力代表值。本规范明确规定正常蓄水位(或防洪高水位)作为持久设计状况下静水压力标准值的计算水位。正常蓄水位系指水库在正常101
运用的情况下,为满足设计的兴利要求在供水期开始时应蓄到的最高水位;防洪高水位系指水库遇到下游防护对象的设计洪水时在坝前达到的最高水位。鉴于坝下游防护对象的防洪标准一般都在100年一遇的洪水范围以内,可以认为属于常遇洪水范畴。因此,对于有防洪作用的水库,可将高于(或等于)正常蓄水位的防洪高水位作为持久状况下的水位对待。水库校核洪水位系指水库遇到大坝的校核洪水时在坝前达到的最高水位。校核洪水出现的概率很低,属稀遇事件,应作为偶然设计状况考虑,相应的校核洪水位就是偶然设计状况下静水压力代表值的计算水位。水库设计洪水位系指水库遇到大坝的设计洪水时在坝前达到的最高水位,它介于正常蓄水位(或防洪高水位)与校核洪水位之间,主要用以计算正常运用时的泄洪流量,确定泄水建筑物的泄洪能力。对挡水建筑物的稳定和结构强度而言,设计洪水位一般不起控制作用。在SDJ21—78《混凝土重力坝设计规范(试行)补充规定》和SDJ145—85《混凝土拱坝设计规范》中,一般已不考虑设计洪水位这一荷载组合情况。参考美国、日本等国外的坝工设计规范或设计导则,对大坝设计也都只考虑正常蓄水位和校核洪水位两种情况。因此,本规范不考虑设计洪水这种情况。本规范系确定各种设计状况下作用代表值的取值标准,有的建筑物(如拱坝、土石坝)还需考虑计算水位低于正常蓄水位时的静水压力与相应作用的组合,此种组合情况应由有关的专业设计规范作出规定。河床式水电站厂房作为挡水建筑物的一部分,故其静水压力代表值的计算水位应与闸、坝等挡水建筑物相同。7.2.3
坝后式和岸边式水电站厂房承受的静水压力作用,其计算水位取决于下游特征水位,即采用由有关设计标准规定的厂房防洪设计洪水位和校核洪水位;在厂房施工期、机组检修等短暂设计状况下,其静水压力代表值的计算水位应按照SD335—89水电站厂房设计规范》的有关规定确定。7.2.5临时性水工建筑物(如导流建筑物、施工围堰、临时性泵102站等)和各种类型大坝施工期渡汛时设计采用的设计洪水标准,在SDJ12—78、SDJ217—87水利水电枢纽工程等级划分及设计标准》、SDJ338—89(水利水电施工组织设计规范》中均有明确规定,可据以计算确定其静水压力代表值的计算水位。7.3水工闸门的静水压力7.3.1水工闸门有多种型式,按其用途可分为工作闸门、事故闸门、检修闸门和施工闸门等,各种闸门的具体运用条件各不相同。本条系指出确定闸门静水压力代表值时应考虑的一般原则。7.3.2设置在发电、供水、泄水等建筑物进水口的工作闸门或事故闸门,是大坝、水闸等挡水建筑物的组成部分,闸门关闭时即起挡水作用。因此,工作闸门或事故闸门的静水压力代表值的计算水位,应按照与7.2.1相同的水位标准,即持久设计状况下的计算水位可采用正常蓄水位或防洪高水位,偶然设计状况下的计算水位采用校核洪水位。7.3.3根据国内工程资料,多数船闸的上游最高通航水位与正常蓄水位一致,最高挡水位与校核洪水位一致。7.3.4
本条所列水工建筑物,在其上游或下游侧一般设有检修闸门,供该建筑物检修时挡水。除河床式水电站有可能安排在汛期检修外,一般安排在枯水期进行,各建筑物检修时的上、下游水位有所不同。因此,检修闸门在短暂设计状况下静水压力代表值的计算水位,应根据设计预定的该建筑物检修时的水位确定。7.3.5导流底孔和其他临时挡水建筑物设置的闸门,运用条件复杂,情况各异、因此,闸门静水压力代表值的计算水位可参照7.3.6规定的有关洪水标准,结合设计预定的挡水水位,经综合分析确定。7.4管道及地下结构的外水压力7.4.1坝内钢管的外水压力主要由水库经坝体混凝土的渗流和沿钢管外望的绕渗形成。本条系参照SD144—85《水电站压力钢103管设计规范》的有关规定,并参考国内17个工程和日本田子仓、南非莫希罗克等水电站的设计经验,以及美国垦务局钢管设计标准等编写而成。目前工程设计中折减系数a值多采用1.0。7.4.2实测地下水位线是确定建筑物外水压力的基本依据。由于地下水位实测工作量很大,一般测量期限较短,所取得的数据有限,因此可以考虑按测得的较高地下水位线作为确定设计地下水位线的基础。此外,在有些情况下很难或几乎不可能测得地下水位线,此时可考虑由地质专家凭经验给出、对于靠近水库的地段,应考虑水库蓄水后地下水位可能出现的变化。对于内水压力较大的引水隧洞,内水外渗可能抬高地下水位,特别是在混凝土衬砌与钢管交界处,更应注意这种情况。7.4.3本条沿用SD134—84
(水工隧洞设计规范》关于混凝土衬砌有压隧洞外水压力的计算方法及外水压力折减系数的取值。考虑到即使在完整性很好的岩层中,通过裂隙处仍可能有渗漏水,故本规范对附录C中1、2级岩体的外水压力折减系数作了适当调整。7.4.4无压隧洞和地下厂房的洞室,可直接通过衬砌排水以大幅度降低外水压力。云峰水电站阀室在混凝土衬砌边墙与围岩之间设置了排水槽。使外水压力几乎减小到零;龚咀、南水水电站在地下厂房周围设置了排水廊道,衬砌与岩体之间设置排水槽,厂房边墙均不考虑外水压力,顶拱则按0.3~0.5倍外压水头考虑。鉴于国内水电工程的实践经验,故提出条文中的有关规定。7.4.5本条对钢板衬砌压力隧洞的外水压力分为三种情况作出规定。1)埋深较浅的钢衬隧洞,钢板厚度通常按内水压力计算确定,采用适当的加劲措施即可满足抗外稳定要求,这种情况一般可不采取排水措施。鉴于外水压力使钢管压屈破坏的经验教训,故对此种情况下的外水压力宜按设计地下水位线以下的全水头计算。(2)在钢材隧洞的上部或侧面设置排水洞以降低地下水位104的工程实例较多,国内如绿水河、花木桥、盐水沟、鲁布革水电站,国外如美国的巴斯康蒂、瑞典的刚斗等。排水洞的排水降压效果与其工程地质条件、地下水的补给条件等有密切关系。如花木桥水电站,在下水平段顶部以上16m处开挖排水洞后,使排水洞以上的地下水位线由原来的37.5m降低到10m以下;而美国巴斯康蒂抽水蓄能电站高压管道的下平段,在管道以上46m处开挖了2条排水洞,并打了大量足以覆盖6
条高压管道范围的排水孔,由于排水孔堵塞和钢筋混凝土衬砌与钢管接头处渗漏等原因,仅使外压水头由124m降低到90m。工程实践表明,采用排水洞并钻深孔排水,可取得较好的排水效果,但需结合工程地质条件,确定排水的长期有效性。(3)国内外还有一些在钢管与混凝土之间或混凝土与围岩之间设置排水管的工程实例,如日本的新高獭川、今市抽水蓄能电站的高压管道’,在钢管与混凝土之间和混凝上与围岩之间均设置了排水管,外水压力水头采用钢管上部覆盖岩层垂直厚度的0·3倍,而喜撰山抽水蓄能电站的高压管道,虽在钢管与混凝土之间设置了排水,但对外水压力水头未作折减。我国花木桥水电站,在高压管道内设置了排水管,外水压力水头折减系数采用0.20,天生桥二级水电站在钢管外围采用了排水管,外水压力水头折减系数采用0.5。在钢管外侧设置排水管排水效果好,但维护修理困难,地下水含有析离的矿物质时可能导致排水管堵塞,因此在估计排水效果时必须考虑排水管的长期有效性。1058扬压力8.1一般规定8.1.1混凝土坝、水闸等水工建筑物施工时通常采用分层浇筑混凝土,浇筑层面及混凝土与基岩接触面常是可能渗水的通道。由于渗透观测资料很少,估算层面或接触面可能脱开部分面积占总面积的百分比往往有困难,为偏于安全计,我国现行混凝土坝、水闸、水电站厂房等设计规范均假定计算截面上扬压力的作用面积系数为l.0
。这与美国、日本的有关设计规范中关于“坝体内部和坝基面上的扬压力均作用于计算截面全部截面积上”的规定是相同的。8.1.2实践经验和原型观恻资料表明,岩基上的混凝土实体重力坝、宽缝坝、空腹坝、大头坝及拱坝等坝基面上的扬压力分布图形是不同的;同一种坝型在不同的地基地质条件及防渗排水措施的情况下,其扬压力分布图形存在很大差异。故应根据不同的水工结构型式、地基地质条件及防渗排水措施,分别确定扬压力的分布图形。挡水建筑物的扬压力是在上、下游静水头作用下所形成的渗流场产生的,是静水压力派生出来的荷载,故其计算水位应与静水压力的计算水位一致。8.1.3在扬压力分布图形中,以往习惯于将取决于下游计算水头的矩形部分的合力称为浮托力,其余部分的合力称为渗透压力。对于在坝基设置抽排系统的情况,则以主排水孔为分界线,分别计算其前后的扬压力。8.2混凝土坝的扬压力8.2.1混凝土坝地基地质条件、防渗排水措施对其扬压力分布图形的影响,情况十分复杂,故通常根据已建工程的实测资料,统106计分析排水孔处的扬压力水头与上、下游水位的关系。根据防渗、排水条件的不同,可分为以下3种情况:(1)当坝基设有防渗帷幕和排水孔时,统计分析排水孔处的(2)当坝基设有防渗帷幕和上游主排水孔,并同时设有下游副排水孔及抽排系统时,分别统计分析主排水孔处的扬压力强度本规范编制时收集到20多座混凝土坝的坝基面实测扬压力观测资料,包括重力坝(实体、、宽缝、空腹坝)、支墩坝(大头、梯形坝)’
拱坝(双曲、重力拱坝)等多种坝型。按不同坝型、不结果表明:(1)其分布概型以正态分布为好(2)其概率分布的0.9分位值与现行规范规定的平均值基本接近。在最终确定扬压力分布图形中的渗透压力强度系数和扬压力强度系数时作了如下考虑:107a)实体重力坝河床坝段、岸坡坝段的渗透压力强度系数分别采用0.25和0.35,宽缝重力坝和大头支墩坝的渗透水流可从宽缝逸出,故其渗透压力强度系数采用比实体重力坝小0.05的值;b)在坝基设有纵、横向排水廊道及抽排措施的情况下,对宽缝重力坝和实体重力坝分别采用不同扬压力强度系数0.I5和0.20,比现行规范不加区分更为合理;C)空腹重力坝的腹孔位置一般在坝体底宽的中间三分之一之内,离排水孔的渗径较长,渗透压力强度系数采用与实体重力坝相同,以策安全;d)岸坡的地下水位因库水位影响而抬高,故岸坡坝段的渗透压力强度系数应比河床坝段大,实测资料表明,采用比河床坝段大0·10的级差比较合适;e)坝基轴排系统主要通过人为控制以降低浮托力,故对残余扬压力系数a2可不区分坝型也不区分下游是否设帷幕一律采用0.5。国内有几座混凝土坝在坝基只设排水孔而未设防渗帷幕。例测扬压力一般均小于设计值,连续观测至今已有17
年,未见异常;石门拱坝8#~12#坝段(占17个坝段的30%),坝基为弱透水的云母钙质片岩,实测扬压力值基本满足设计要求,未见不利影响;三门峡坝坝基为闪长岩,在吕容值为1lu的地段未做连续帷幕设排水,实测渗透压力强度系数为0、15~0.20。因此,对于坝基仅设排水孔而未设防渗帷幕的情况,其渗透压力强度系数a值可按照既设防渗帷幕又设排水孔的情况(即条文表8.2.1中A项)适当提高后采用。在拱坝拱座稳定分析中,岸坡拱座侧面排水孔处的渗透压力强度系数一般可按“岸坡坝段”考虑。但对于复杂地质条件下的高拱坝,拱座侧面的渗透压力是一个三向渗流问题。其靠上游一侧受库水位的影响,靠山坡一侧受地下水的影响,且地质条件复108杂的高拱坝的拱座稳定比坝体应力对坝的安全更重要二这是近十多年来已为工程界所公认的,故应经三向渗流试验论证。8.2.2在所调查的20多个混凝土坝扬压力观测资料中,均未取得坝体内部扬压力的观测值。现行混凝土坝设计规范规定,坝体内部排水管处的扬压力强度系数a3为0.15~0.30。参照坝基面由实测统计资料确定的扬压力强度系数,并考虑到坝体内部混凝土层面的粘结条件较坝基混凝土与岩石接触面粘结条件优越这一情况,规定坝体内部比坝基接触面的扬压力强度系数小一个档次,即对实体重力坝、拱坝的扬压力强度系数a3采用0.20,宽缝重力坝及大头坝有宽缝部位的扬压力系数a3采用0.15。8.2.3
当扬压力按浮托力和渗透压力分别计算时,浮托力主要取决于相应设计状况下的下游计算水位,并与静水压力代表值的计算水位一致,故采用与静水压力相同的作用分项系数,即1.0。渗透压力、主排水孔前的扬压力和主排水孔后的残余杨压力的变异性,主要表现在渗透压力强度系数a、扬压力强度系数a1及残扬压力强度系数2。的变异性,而它们均可采用随机变量概率模型来描述。根据20多座混凝土坝坝基扬压力的观测资料,按不同坝型、不同坝段(河床坝段或岸被坝段)分类进行统计分析的结果表明,a、a1、a2基本服从正态分布,其概率分布的0.9分位值与现行规范规定的平均值比较接近,故用以确定与扬压力代表值相应的扬压力强度分布图'
您可能关注的文档
相关文档
- 《港口水工建筑物》课后思考题习题答案.doc
- 人民交通出版社《港口水工建筑物(第二版)》1~8章课后思考题答案.pdf
- DL5073-2000水工建筑物抗震设计规范.pdf
- DL5077-1997水工建筑物荷载设计规范.pdf
- DLT5082-1998水工建筑物抗冰冻设计规范.pdf
- DLT5099-1999水工建筑物地下开挖工程施工技术规范.pdf
- DLT5099-2011水工建筑物地下工程开挖施工技术规范.pdf
- DLT5148-2001水工建筑物水泥灌浆施工技术规范.pdf
- DLT5207-2005水工建筑物抗冲磨防空蚀混凝土技术规范.pdf
- DLT5215-2005水工建筑物止水带技术规范.pdf