- 984.50 KB
- 37页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'目录前言21.分析原始资料32.主接线的设计42.1主接线方案的确定42.2.1主接线方案一42.2.2主接线方案二52.2.3主接线比较和确定53.主要电器的选择63.1.变压器选择63.1.1主变选择63.1.2站用变压器73.2.主要回路电流计算83.2.1220kv侧工作电流计算83.2.210kv侧工作电流计算83.2.3500kv侧工作电流计算94.短路电流计算94.1短路电流方法94.1.1短路电流计算一般规定:94.1.2计算步骤94.2.短路电流计算105.主要电气设备的选择135.1电气设备选择的一般原则135.2.高压断路器的选择155.2.1500KV侧断路器的选择165.2.2220KV侧断路器的选择175.2.310KV侧断路器的选择195.3隔离开关的选择205.3.1500KV侧隔离开关的选择215.3.2220KV侧隔离开关的选择225.2.310KV侧隔离开关的选择235.4电流互感器的选择245.4.1500KV侧电流互感器的选择245.4.2220KV侧电流互感器的选择265.4.310KV侧电流互感器的选择275.5电压互感器的选择285.5.1500KV侧电压互感器的选择295.5.2220KV侧电压互感器的选择295.5.310KV侧母线电压互感器的选择305.6母线的选择与校验305.6.1母线的分类及特点305.6.2母线截面的选择315.6.3母线选择与校验3237
5.6.4500KV侧母线选择325.6.5220KV母线的选择335.6.610KV侧母线的选择356.参考文献3537
前言电力工业是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的位置,是时间国家现代化的战略重点。电能是一种无形的、不能大量储存的二次能源。要满足国民经济发展的要求就必须加强电网建设,而变电站建设就是电网建设中的重要一环。在变电站的设计中,既要求所变电能能很好地服务于工业生产,又要切实保证工厂生产和生活的用电的需要,并做好节能工作,就必须达到以下基本要求:安全 在变电过程中,不发生人身事故和设备事故。可靠 所变电能应满足电能用户对用电的可靠性的要求。优质 所变电能应满足电能用户对电压和频率等质量的要求。经济 变电站的投资要少,输送费用要低,并尽可能地节约电能、减少有色金属的消耗量和尽可能地节约用地面积。500KV变电站属于高压网络,该枢纽变电所所涉及方面多,考虑问题多,分析变电所担负的任务及用户负荷等情况,选择所址,利用用户数据进行负荷计算。同时进行各种变压器的选择,从而确定变电站的接线方式,选择变压器,选择变电站高低压电气设备,再进行短路电流计算,进行动热稳定校验。为变电站平面及剖面图提供依据。本变电所的初步设计包括了:(1)选择主变压器数量和台数(2)设计变电所主接线(3)设计变电所自用电接线(4)短路计算(5)设计导线及主要电器设备37
1.分析原始资料根据原始资料,我们可知此变电站电压等级共有三个,分别是500kv,220kv,10kv。进一步分析可得到下表:电压等级进出线回数负荷(max)负荷(min)利用小时500kV4100MW5000220kV1240MW25MW420010kV820MW3500该站为枢纽变电站,可以分析出,500kV为该站接入系统的电压等级,220kV和10kV为该变电站向外送电的电压等级,所以220和10kv应该和系统500kv母线相连,并且向外输送电能。主变压器的台数原始资料已经给出来了,最终容量2*240MVA,站用变压器为2*500KVA。对原始资料进行分析之后,进而可以确定主接线方案。2.主接线的设计2.1主接线方案的确定1.电气主接线设计的基本原则:电气主接线设计的基本原则是以设计任务书为依据,在原始资料的分析基础上,根据对电源和出线回路数,电压等级,主变压器台数,容量以及母线结构的不同考虑,以可靠性,灵活性和经济性的原则,初步确定拟定两个主接线,通过对两个主接线的分析,确定最终的主接线方案。2.各种接线方式分析:37
需设计的变电站为地方枢纽变电站,对稳定性要求很高,要求在不停电情况下进行检修,在短路等故障下仍能保证供电,所以选择双母线带旁路和二分之三接线方式。3.具体接线方式的确立根据《电力工程电气设计手册(电气一次部分)》的相关要求,10kV出线回路数8回时,均为二、三级负荷时,可采用单母分段接线,220kv-500kv配电装置出线回路数6回及以上时,可采用双母线接线,500kV进线数4回时,可采用一台半接线。2.2.1主接线方案一方案一,500kV侧采用一台半接线,220kV采用双母线分段接线方式,10kv侧采用单母分段接线方式,站用电从10kv侧母线引出。500kv采用一台半,使用的断路器台数较多,占地面积也大,但是稳定性高,运行灵活,检修和母线、出线、进线断路器发生故障的时候,能在不中断供电的情形下,检修和事故处理。10kv和220kv侧分别采用单母分段接线方式和双母线分段的接线方式。使用双母线接线,当一个母线发生故障时,可能会短时停电,之后马上倒换运行方式,恢复供电。并且,母线分段,会使母线故障的停电范围缩小一半。旁路接线,避免出线的断路器检修的停电。总之,双母线分段带旁路运行灵活可靠。500kv、220kv、10kv使用2台3绕组变压器连接,2台变压器的型号参数一样,完全能满足正常运行的要求,在一台事故或者检修情形下,剩下的两台也能满足运行要求。2.2.2主接线方案二方案二,500kv、220kv和10kv侧,分别采用双母线分段带旁路接线、双母线分段接线、单母分段接线。使用双母线分段带旁路接线,在母线检修时,无需中断供电,当一个母线发生故障时,可能会短时停电,之后马上倒换运行方式,恢复供电。并且,母线分段,会使母线故障的停电范围缩小一半。旁路接线,避免出线的断路器检修的停电。总之,双母线分段带旁路运行灵活可靠。37
500kv、220kv、10kv使用2台3绕组变压器连接,2台变压器的型号参数一样,完全能满足正常运行的要求,在一台事故或者检修情形下,剩下的一台也能满足运行要求。2.2.3主接线比较和确定两个接线方式,只是在500kv侧的接线方式有些差异,方案一500kv侧使用的是二分之三断路器接线方式,而方案二500kv侧使用双母线带旁路的接线方式。正常运行情况下,10kv和220kv侧的潮流方向相同,从经济角度分析,这两个电压等级的建造费用和运行维护费用大体相同,所以只需将500kv侧的接线方式,单独拿出来进行比较,择优便可。方案一中,500kv侧使用一台半的接线方式,有很高的稳定性和运行灵活性,在一般的事故和检修的情况下,不会造成回路的断电。检修的情况下,无需进行大量的倒闸操作,调度和扩建方便。所以,对于330-500kv的配电装置,出线在6回以上,适合采用一台半接线方式,本例正是这种情况。但是,一台半断路器接线的运行方式,使用的断路器的台数多,占地面积大,建造成本高,并且一台半的继电保护整定复杂。方案二中,500kv侧使用双母线分段带旁路的接线方式,可以满足正常的运行要求,在母线和出、进线断路器检修时候,不用停电。和二分之三接线相比,减少了断路器使用,配电装置的建造面积也相应变小了,建造成本较低。但是在母线故障情况下,可能会造成一部分的进出线断开,对于一些重要负荷和电源进线,是潜在的威胁。并且如果进线也通过隔离开关接入旁路的话,由于进线方向问题,会造成配电装置建造复杂化。500kv是一个要求运行可靠性极高的电压等级,所以,从技术和经济角度具体分析,可以选择500kv使用一台半接线方式。主接线图见附页37
第三章:主要电器的选择3.1.变压器选择3.1.1主变选择为了保证供电可靠性,避免一台主变压器故障或检修时影响供电,变电站一般装设多台主变压器故本变电站选择两台主变压器三绕组接线方式,三台主变压器T1T2使用同样型号,容量计算如下。(1)T1的10kv侧:正常工作时,两台主变均摊负荷:S===137.5(MVA)当一台主变故障时,剩余的两台主变能输送所有功率的百分之70:S===175(MVA)(2)T1的220kv侧:1)正常工作时,两台主变均摊负荷:S===129.41(MVA)2)当一台主变故障时,剩余的两台主变能输送所有功率的百分之70:S===164.71(MVA)(3)T1的500kv侧:S=S+S=175+164.71=339.71(MVA)根据上诉原则,查表得知,可选择OSFPSZ-/500变压器。由表格可知,各类数据如下:37
型号额定容量/kVA接线方式容量比/%额定电压/kv阻抗电压(%空载损耗/kw短路损耗/kwOSFPSZ-/500YNa0d11100/100/100高中低高-中高-低中-低190800500246101026413.1.2站用变压器题中要求站用变压器为2*500kvA,所以我们选择两台变比为110kv/10kv的变压器(变压器高压侧选择从110kv出线,是考虑从220和500kv出线的变压器的绕组多,变压器质量大,造价也高)。选择两台变压器的原因时,500kv的变电站的站用电应有两台变压器,互为备用。型号容量/KVA变比高压侧额定电压/kv低压侧额定电压/kv短路阻抗标幺值空载损耗/kw负载损耗/kwSfl7-6300/1106300110110(121)10.510.511.6413.2.主要回路电流计算主要回路正常工作时候,通过的电流计算的目的在于,用该正常工作电流来选择断路器,隔离开关,电流互感器和母线。37
3.2.1220kv侧工作电流计算(1)出线:I===0.18(kA)(2)电源侧进线:I===0.61(kA)(4)分段断路器(考虑一段母线的变压器故障时的功率传送):I===0.61(kA)(5)母联:I===1.23(kA)3.2.210kv侧工作电流计算(1)出线:I===0.27(kA)(2)电源侧进线:I===0.68(kA)(3分段断路器(考虑一段母线的变压器故障时的功率传送):I===0.68(kA)(5)母联:I===1.31(kA)3.2.3500kv侧工作电流计算500kv37
使用的是二分之三接线方式,断路器的通过电流计算比较繁琐,做近似计算。500kv侧的向外输送的最大功率为:P=200+400=600(kw)则,一台断路器可能通过的最大的计算电流为:I===0.83(KA)4.短路电流计算4.1短路电流方法4.1.1短路电流计算一般规定:(1)计算在如下条件下进行:电力系统中所有电源均在额定负荷下运行;所有同步电机都具有自动调整励磁装置(包括强行励磁);短路发生在短路断流为最大值的瞬间;所有电源的电动势相位角相同;应考虑对短路电流有影响的所有元件,但不考虑短路点的电弧电阻。(2)计算短路电流所用的接线方式,应是可能发生最大短路电流的正常接线方式(即最大运行方式)。(3)应按工程设计的规划容量计算,并考虑电力系统的远景发展规划,一般取工程建成后的5-10年。(4)短路计算中一般按三相短路计算。在正常接线方式时,以通过设备的短路电流为最大的地点为短路计算点。在工程设计中,短路电流计算均采用实用计算法,即是在一定的假设条件下计算出短路电流的各个分量,而不是用微分方程去求解短路电流的完整表达式。4.1.2计算步骤本节介绍了适用于工程实用计算的运算曲线法,其计算步骤如下:(1)选择计算短路点。(2)绘出等值网络(次暂态网络图),并将各元件电抗统一编号。37
(3)化简等值网络:将等值网络化简为以短路点为中心的辐射形式等值网络,并求出各电源与短路点之间的电抗,即转移电抗X∑。(4)求计算电抗Xc。(5)由运算曲线查出各电源供给的短路电流周期分量的标幺值。(6)计算短路电流周期分量有名值和短路容量。(7)计算短路电流冲击值。(8)绘制短路电流计算结果表。4.2.短路电流计算由变压器选择参数可知:,,(该数据已归算额定容量)各绕组的短路电压百分数计算各绕组电抗由于两台变压器完全相同,所以,,。由于两台变压器型号完全相同,其中性点电位相等,因此等值电路图可化简为37
所以(1)当点短路时起始次暂态电流短路点电流短路冲击电流全电流最大有效值:37
短路电流容量:(2)当短路时起始次暂态电流短路点电流短路冲击电流全电流最大有效值:短路电流容量:(3)当点短路起始次暂态电流短路点电流短路冲击电流全电流最大有效值:短路电流容量:37
5.主要电气设备的选择由于电气设备和载流导体的用途及工作条件各异,因此它们的选择与校验项目和方法也都完全不相同。但是,对它们的基本要求却是一致的。电气设备和载留导体在正常运行和短路时都必须可靠地工作,必须按正常工作条件进行选择,并按短路状态来校验热稳定和动稳定。为此,它们的选择都有一个共同的原则。5.1电气设备选择的一般原则应满足正常运行、检修短路和过电压情况下的要求并考虑远期发展。(1)应按当地环境条件校核。(2)应力求技术先进和经济合理。(3)同类设备应尽量减少品种。(4)与整个工程的建设标准协调一致。(5)选用的新产品均应具有可靠的试验数据并经正式鉴定合格。在特殊情况下选用未经正式鉴定的新产品应经上级批准。技术条件:选择的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。(1)长期工作条件:①电压选用的电器允许最高工作电压不得低于该回路的最高运行电压,即,。②电流选用的电器额定电流不得低于 所在回路在各种可能运行方式下的持续工作电流,即。由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。37
高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能方式下回路持续工作电流的要求。(2)短路稳定条件:①校验的一般原则:a)电器在选定后应按最大可能通过的短路电流进行动、热稳定校验,校验的短路电流一般取最严重情况的短路电流。b)用熔断器保护的电器可不校验热稳定。当熔断器有限流作用时,可不验算动稳定,用熔断器保护的电压互感器的回路,可以不用验算热、动稳定。②短路的热稳定条件:(4-1)——在计算时间ts内,短路电流的热效应(KA2.s);It——t秒内设备允许通过的热稳定电流有效值(KA);t——设备允许通过的热稳定电流时间(s);校验短路热稳定所用的计算时间t按下式计算:(4-2)——继电保护装置后备保护动作时间(s);——断路器的全分闸时间(s);③短路的动稳定条件:电动力稳定是导体和电器承受短时电流机械效应的能力,称动稳定。满足动稳定的条件是:或(4-3)、——短路冲击电流幅值及其有效值、——电气设备允许通过的动稳定电流的幅值和有效值下列几种情况可不校验热稳定和动稳定:①用熔断器保护的电气设备,其热稳定由熔断时间保证,故可不验算热稳定。37
①采用有限流电阻的熔断器保护的设备,可不校验动稳定。②装设在电压互感器回路中的裸导体和电气设备可不校验动、热稳定。(3)绝缘水平:在工作电压的作用下,电器的内、外绝缘应保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适用的过电压保护设备。环境条件(1)温度普通高压电器在环境最高温度为+40℃时,允许按额定电流长期工作。当电器安装点的环境温度高于+40℃时,每增加1℃,建议额定电流减少1.8%;当低于+40℃时,每降低1℃,建议额定电流增加0.5%,但总的增加值不得超过额定电流的20%。(2)海拔电气的一般使用条件作为海拔高度不超过1000m。对安装在海拔高度超过1000m地区的电器外绝缘一般应予加强,可选用高原型产品或选用外绝缘提高一级的产品。在海拔3000m以下地区,220KV及以下配电装置也可选用性能优良的避雷器来保护一般电器的外绝缘。由于现有220KV及以下大多数电器的外绝缘有一定裕度,故可使用在海拔2000m以下的地区。5.2.高压断路器的选择高压断路器在高压回路中起着控制和保护的作用,是高压电路中最重要的电器设备。高压断路器主要功能是:正常运行倒换运行方式,把设备或线路接入电网或退出运行,起着控制作用;高压断路器是开关电器中最为完善的一种设备,其最大特点是能开断电器中负荷电流和短路电流。选择断路器时应满足以下基本要求:(1)在合闸运行时应为良导体,不但能长期通过负荷电流,即使通过短路电流,也应该具有足够的热稳定性和动稳定性。37
(2)在跳闸状态下应具有良好的绝缘性。(3)应有足够的开断能力和尽可能短的分断时间。(4)应有尽可能长的机械寿命和电气寿命,并要求结构简单、体积小、重量轻、安装维护方便的特点。本次在选择断路器,考虑了产品的系列化,即尽可能采用同一型号断路器,以便减少设备的种类,方便设备的运行和检修。考虑到可靠性和经济性,方便运行维护和实现变电站设备的无由化目标,且由于SF6断路器以成为超高压和特高压唯一有发展前途的断路器。故在110KV侧采用六氟化硫断路器,其灭弧能力强、绝缘性能强、不燃烧、体积小、使用寿命和检修周期长而且使用可靠,不存在不安全问题。真空断路器由于其噪音小、不爆炸、体积小、无污染、可频繁操作、使用寿命和检修周期长、开距短,灭弧室小巧精确,所须的操作功小,动作快,燃弧时间短、且于开断电源大小无关,熄弧后触头间隙介质恢复速度快,开断近区故障性能好,且适于开断容性负荷电流等特点。因而被大量使用于35KV及以下的电压等级中。除需满足各项技术条件和环境条件外,还应考虑便于安装调试和运行维护,并经技术经济比较后才能确定。5.2.1500KV侧断路器的选择额定电流和电压的选择:,式中、分别为电气设备和电网的额定电压,KV;,分别为电气设备的额定电流和电网的最大负荷电流,KA。(1)额定电压选择:(2)额定电流:(3)开断电流选择:(4)额定关合电流的选择:根据以上数据初步选择SFMT-500高压六氟化硫断路器,其参数为下表所示。SFMT-500高压六氟化硫断路器额定工作电压:550KV额定关合电流(峰值):160KA37
额定工作电流:2000A动稳定电流(峰值):160KA额定开断电流:50KA3s热稳定电流:40KA(5)热稳定校验查《变电所及电力网设计与应用》知当主保护为速断保护时,在缺乏断路器分闸时间数据时,可用下列平均值:对于快速及中速断路器,取;对于慢速动作断路器,取(为验算热稳定的短路时间)。满足热稳定需求(6)动稳定校验:满足要求。SFMT-500高压六氟化硫断路器选择校验结果如下表。LW10-330高压六氟化硫断路器选择校验结果项目参数SFMT-500产品数据计算数据550KV500KV2000A290.9A50KA4.887KA4800KA2.s3.582KA2.s160KA12.45KA经校验满足要求,故选择SFMT-500型高压SF6断路器。5.2.2220KV侧断路器的选择(1)额定电压选择:(2)额定电流:37
(3)额定开断电流选择:(4)额定关合电流的选择:根据以上数据初步选择LW2-220高压六氟化硫断路器,其参数为下表所示。LW2-220高压六氟化硫断路器额定电压242KV额定关合电流(峰值):80KA额定电流:2500A动稳定电流(峰值):80KA额定开断电流:31.5KA3S热稳定电流:31.5KA固有分闸时间:0.025s燃弧时间:0.05s(5)热稳定校验(取后备保护时间)其中是验算热稳定的短路时间;指后备保护动作时间;是固有分闸时间;是电弧持续时间。满足热稳定需求(6)动稳定校验:LW2-220高压六氟化硫断路器选择校验结果项目参数LW2-220产品数据计算数据242KV220KV2500A1323A31.5KA11.11KA2976.75KA2.s27.8KA2.s80KA28.33KA经校验满足要求,故选择LW2-220型高压SF6断路器。37
5.2.310KV侧断路器的选择(1)额定电压选择:(2)额定电流:(3)额定开断电流选择:(4)额定关合电流的选择:根据以上数据初步选择LW8-10六氟化硫少油断路器,其参数为下所示。LW8-10六氟化硫断路器额定电压:10KV额定关合电流(峰值):100KA额定电流:1600A动稳定电流(峰值):300KA额定开断电流:25KA4S热稳定电流:25KA固有分闸时间:0.15s燃弧时间:0.05s(5)热稳定校验(取后备保护时间为)其中是验算热稳定的短路时间;指后备保护动作时间;是固有分闸时间;是电弧持续时间。满足热稳定需求(6)检验动稳定:满足要求LW8-10六氟化硫断路器选择参数依据如下表所示。LW8-10六氟化硫断路器选择参数设备项目LN8-10产品数据计算数据37
10.5KV10KV1600A1247A25KA22.99KA300KA280.4KA2500KA2.s184.99KA2.s经校验满足要求,故选择LW8-10型SF6断路器。各断路器的选择结果如表所示。断路器的型号及参数性能指标位置型号额定电压(KV)额定电流(A)额定断开电流(KA)动稳定电流(KA)热稳定电流(KA)固有分闸时间(s)合闸时间(s)500KV侧FWMT-50050020005016063(4)变压器220KV侧LW2-220220250031.58031.5(4)0.0250.05220KV出线侧LW2-220220250031.58031.5(4)0.0250.05变压器10KV侧LW8-10102000256325(4)0.150.3510KV出线侧LW8-10102000256325(4)0.150.355.3隔离开关的选择隔离开关(俗称刀闸)没有灭弧装置。它既不能断开正常负荷电流,更不能断开短路电流,否则即发生“带负荷拉刀闸”的严重事故。此时产生的电弧不能熄灭,甚至造成飞弧(相间或相对地经电弧短路),会严重损坏设备并危及人身安全。隔离开关的用途有以下几个方面:(1)隔离电压。在检修电气设备时,将隔离开关打开,形成明显可见的断点,使带电部分与被检修的部分隔开,以确保检修安全。(2)可接通或断开很小的电流。如电压互感器回路,励磁电流不超过2A的空载变压器回路及电容电流不超过5A的空载线路等。(3)可与断路器配合或单独完成倒闸操作。37
5.3.1500KV侧隔离开关的选择(1)额定电压选择:(2)额定电流选择:根据以上数据初步选择户外GW7-500隔离开关,其参数见表。GW7-500隔离开关额定电压:500KV固有分闸时间:0.025s额定电流:3150A燃弧时间:0.05s动稳定电流峰值:100KA3s热稳定电流:40KA(3)热稳定校验(取后备保护时间)其中验算热稳定的短路时间后备保护动作时间固有分闸时间电弧持续时间满足热稳定需求(4)动稳定校验:满足要求。GW7-500隔离开关选择校验结果如下表。GW10-330/1600隔离开关选择校验结果项目参数GW7-500产品数据计算数据37
330KV330KV1600A440.9A4800KA2.s12.44KA2.s100KA18.96KA经校验满足要求,故选择GW7-500型隔离开关。5.3.2220KV侧隔离开关的选择(1)额定电压选择:=220KV(2)额定电流:根据以上数据初步选择GW4-220隔离开关,参数见表。GW4-220隔离开关额定电压:2200KV固有分闸时间:0.025s额定电流:2000A燃弧时间:0.05s动稳定电流峰值:80KA4s热稳定电流:31.5KA(3)热稳定校验(取后备保护时间)其中是验算热稳定的短路时间;指后备保护动作时间;是固有分闸时间;是电弧持续时间。满足热稳定需求.37
(4)动稳定校验:,满足要求。隔离开关参数见表。GW4-220隔离开关选择校验结果项目参数GW4-220产品数据计算数据220KV2200KV2000A1323A3969KA2.s111.99KA2.s80KA56.89KA经校验满足要求,故选择GW4-220型隔离开关。5.2.310KV侧隔离开关的选择(1)额定电压选择:(2)额定电流:根据以上数据初步选择GN4-10/2000隔离开关,参数见表.GN4-10/2000隔离开关额定电压:10KV固有分闸时间:0.025s额定电流:2000A燃弧时间:0.05s动稳定电流峰值:80KA4s热稳定电流:31.5KA(3)热稳定校验(取后备保护时间)其中是验算热稳定的短路时间;指后备保护动作时间;是固有分闸时间;是电弧持续时间。37
满足热稳定需求.(4)检验动稳定:满足要求.GN4-10/2000户内型隔离开关选择参数依据如表所示。GN4-10/2000隔离开关设备项目GN4-10/2000产品数据计算数据10KV10KV2000A1247A80KA58.62KA3969KA2.s118.92KA2.s经校验满足要求,故选择GN4-10/2000型隔离开关。各隔离开关的选择结果如表所示。隔离开关的型号及参数开关编号型号额定电压(KV)额定电流(A)动稳定电流(KA)热稳定电流(s)(KA)500KV侧GW7-500500160010040(3)220KV变压器侧GW4-220DW22020008031.5(4)10KV出线侧GN4-10/20001020008031.5(4)5.4电流互感器的选择5.4.1500KV侧电流互感器的选择(1)一次回路额定电压:(2)一次回路额定电流:37
根据以上两项,初选LB1-500瓷绝缘户外型电流互感器,参数见表LB1-500瓷绝缘户外型电流互感器型号额定电流比A级次组合准确级次二次负荷10%倍数1S热稳定动稳定准确等级0.2V.A0.5135P10P二次负荷倍数电流KA倍数电流KA倍数ΩV.ALB1-5004300/5D/DD/0.5D0.51.2241.2306060(3)热稳定校验:热稳定校验的条件::电流互感器的额定一次电流,A;:电流互感器热稳定倍数;t:短路热稳定电流通过时间,一般取t=1s。由前面计算可得满足热稳定要求。(4)动稳定校验动稳定校验的条件::额定一次电流,A;:电流互感器的动稳定倍数;:短路冲击电流瞬时值,KA。=18.96KA完全满足动稳定要求。37
综上所述,500KV侧最终选择LB1-500瓷绝缘户外型电流互感器。5.4.2220KV侧电流互感器的选择(1)一次回路额定电压:(2)一次回路额定电流:初选LB-220W1瓷绝缘户外型差动保护用电流互感器,其参数见表。LCWD-110瓷绝缘户外型差动保护用电流互感器型号额定电流比A级次组合准确级次二次负荷10%倍数1S热稳定动稳定准确等级0.2V.A0.5135P10P二次负荷倍数电流KA倍数电流KA倍数ΩV.ALB-220W1(2×50)~(2×600)/5D1/D20.5D1D20.51.241.21.2201575130(3)热稳定校验热稳定校验的条件::电流互感器的额定一次电流,A;:电流互感器热稳定倍数;t:短路热稳定电流通过时间,一般取t=1s。由前面计算可得满足热稳定要求。(4)动稳定校验动稳定校验的条件::额定一次电流,A:电流互感器的动稳定倍数37
:短路冲击电流瞬时值,KA完全满足动稳定要求。综上所述,220KV侧最终选择LB-220W1瓷绝缘户外型差动保护用电流互感器。5.4.310KV侧电流互感器的选择(1)一次回路额定电压:(2)一次回路额定电流:初选LZZB7-10(Q)差动保护用电流互感器,其参数如下:LZZB7-10(Q)差动保护用电流互感器参数额定一次电流/A准确级组合额定二次输入/VA短时热电流(1s)/KA额定动稳定电流/KA0.20.510P1010P1515000.2/10P0.5/10P0.2/0.510P/10P5050605072130(3)热稳定校验热稳定校验的条件::电流互感器的额定一次电流,A;:电流互感器热稳定倍数;t:短路热稳定电流通过时间,一般取t=1s。37
由前面计算可得满足热稳定要求。(4)动稳定校验动稳定校验的条件::额定一次电流,A:电流互感器的动稳定倍数:短路冲击电流瞬时值,KA完全满足动稳定要求。综上所诉,10KV侧最终选择LZZB7-10(Q)差动保护用电流互感器。5.5电压互感器的选择电压互感器的选择与配置,除应满足一次回路的额定电压外,其容量与准确度等级应满足测量仪表、保护装置和自动装置的要求。负荷分配应在满足相位要求下尽量平衡,接地点一般设在配电装置端子箱处。电压互感器的特点(1)容量很小,类似于一台小容量变压器,但结构上需要有较高的安全系数;(2)二次侧所接测量仪表和继电器电压线圈阻抗很大,互感器近似于空载状态运行,即开路状态。电压互感器的选择校验电压互感器的选择不需要进行动稳定、热稳定校验,选择应满足以下条件。(1)按额定电压选择。所选电压互感器一次额定电压必须与安装处电网的额定电压一致,二次额定电压一般为100V。要按额定电压选择,应满足式中:选择电压互感器铭牌标出的额定电压,KV;:电压互感器安装地点的额定电压,KV。(2)电压互感器类型的选择根据用途和二次负载性质,选择电压互感器的类型。在6~35KV屋内配电装置中,一般采用油浸式或浇注式电压互感器;110~220KV配电装置特别是母线上装设的电压互感器,通常采用串级式电压互感器;当容量和准确级满足要求时,通常多在出线上采用电容式电压互感器。(3)按准确度等级选择除以上两点,选择电压互感器时还应注意其准确度等级。37
测量仪表和功率方向继电器用的电压互感器,应选用0.2级或0.5级;供一般监视仪表和电压继电器用的电压互感器应选用1~3级。5.5.1500KV侧电压互感器的选择型式:采用电容式电压互感器,作电压,电能测量及继电保护用。电压:准确等级:用于保护、测量、计量用,其准确等级为0.5级,查相关设计手册,选择PT的型号为:TYD-500。参数详见表。TYD-500单相电容式电压互感器型号额定电压KV二次绕组1额定容量二次绕组2额定容量最大容量(V.A)一次绕组二次绕组辅助绕组(V.A)(V.A)0.20.5133P6PTYD-5000.1150500100020005.5.2220KV侧电压互感器的选择型式:采用串级式电压互感器,作电压,电能测量及继电保护用。电压:准确等级:用于保护、测量、计量用,其准确等级为0.5级,查相关设计手册,选择PT的型号为:TYD-220,参数详见表。.TYD-220串级式瓷绝缘电压互感器型额定电压KV二次绕组1额定容量二次绕组2额定容量最大容量37
号(V.A)一次绕组二次绕组辅助绕组(V.A)(V.A)0.20.5133P6PTYD-220220/0.1500100020005.5.310KV侧母线电压互感器的选择型式:采用油浸式电压互感器,作电压,电能测量及继电保护用。电压:额定一次电压=准确等级:用于保护、测量、计量用,其准确等级为0.5级,选择PT的型号:JDJJ-10。参数详见。JDJJ-10单相油浸式接地保护用电压互感器型号额定电压(KV)二次绕组1额定容量二次绕组2额定容量最大容量(V·A)一次绕组二次绕组辅助绕组(V·A)(V·A)0.20.5133P6PJDJJ-1015025060012005.6母线的选择与校验5.6.1母线的分类及特点(1)母线按所使用的材料分类铜母线。铜母线电阻率低、机械强度高、抗腐蚀性强,是很好的导体材料。但铜储量少,属贵重金属,只在含有腐蚀性气体的场合才采用。铝母线。铝的电阻率比铜高,但储量多,比重小,加工方便,价格便宜,所以通常情况下应尽量采用铝母线。钢母线。钢母线的优点是机械强度高,价格便宜。但钢的电阻率是37
铜的7倍,用于交流时会产生很强的集肤效应,所以仅用在高压小容量回路(如电压互感器)和电流在200A以下的低压和直流电路,以及接地装置中。(2)母线按截面形状分类矩形母线。矩形母线具有集肤效应系数小、散热条件好、安装简单、连接方便等优点。在35KV及以下的户内配电装置中多采用矩形母线。管型母线。管型母线是空芯导体,集肤效应系数小,且其直径较大、电晕临界点压高。35KV以上的户外配电装置中多采用管型母线。槽形母线。槽形母线的电流分布较均匀,与同截面矩形母线相比,集肤效应系数小、冷却条件好、金属材料的利用率高、机械强度高。当母线工作电流很大,每相需要三条以上的矩形母线才能满足要求时,一般均选用槽形母线。5.6.2母线截面的选择除配电装置的汇流母线及较短导体按导体长期发热允许电流选择外,其余导体截面,一般按经济电流密度选择。(1)按导体长期发热允许电流选择,导体中最大持续工作电流I应不大于导体长期发热的允许电流即:——与实际环境温度和海拔有关的综合校正系数,——在额定环境温度=+25℃时导体允许电流,A;——导体所在回路中最大持续工作电流,A;当导体允许最高温度为+70℃和不计日照时,K值可用下式计算:式中,、分别为导体长期发热允许最高温度和导体安装地点实际环境温度。(2)按经济电流密度选择,按经济电流密度选择导体截面可使年计算费用最低,对应不同种类的导体和不同的最大负荷年利用小时数将有一个年计算费用最低的电流密度称经济电流密(J),导体的经济截面可按下式计算获得:(2)热稳定校验:按上述情况选择的导体截面S,还应校验其在短路条件下的热稳定。即导体的截面积应不小于短路热稳定决定的导体最小截面积,用(3)公式表示如下:37
—热稳定系数—肌肤效应系数(KA)—短路电流的热效应(4)动稳定校验:当短路冲击电流通过母线时,母线将承受很大的电动力,如果母线间的电动力超过允许值,会使母线变形弯曲,因此必须校验固定于支柱绝缘子上的每跨母线是否满足动稳定要求。要求每跨母线中产生的最大应力计算值不大于母线材料允许的抗弯应力,即动稳定必须满足下列条件:—母线材料的允许抗弯应力,Pa(硬铅为69×106P、硬铜137×106Pa,铜为157×106Pa),—短路时每跨母线中的最大计算应力,Pa5.6.3母线选择与校验母线一般按:①母线材料、类型和布置方式;②导体截面;③热稳定;④动稳定等项进行选择和校验;⑤对于110KV以上母线要进行电晕的校验;⑥对重要回路的母线还要进行共振频率的校验。5.6.4500KV侧母线选择500kv侧使用一个型号的断路器,断路器的数据如下表格,断路器的动热稳定电流选取500kv侧,三相短路最大的电流进行校验:断路器参数断路器型号开断电流/kA安装位置台数37
额定电压/kv额定电流/kA热稳定电流/kA动稳定电流/KA关合电流/kA全开断时间SFMT-5005502.0063(3S)160501600.06500KV侧15短路计算时间:热稳定校验:动稳定校验:开断电流校验:关合电流校验:综上,断路器满足动热稳定校验的条件5.6.5220KV母线的选择220kv母线,年平均使用时间为4500h>5000h,按最大允许电流选择(1)母线最大工作电流:查《发电厂电气部分》附录表1,选取125*10mm的矩形铝导体,K=1.12,竖放最大允许电流为2.177kA,温度修正系数(环境温度设为35摄氏度)K=0.88则有:37
(2)热稳定校验:正常工作温度:查表知C=93(AS)(3)动稳定校验(取档距为1.3m)自振频率:不用考虑共振影响相间距离按最小安全净距A2选择a=A2=1.1m,,最大相间应力:截面距:得矩形铝导体可以满足要求动稳定校验要求综上,选择125mm*10mm的矩形铝导体,绝缘子距离选择1.2m5.6.610KV侧母线的选择10KV侧母线一般选择矩形母线。矩形母线具有集肤效应系数小、散热条件好、安装简单、连接方便等优点。37
(1)按长期发热允许电流选择截面。计算式为最大持续工作电流查表(矩形铝导体长期允许载流量和集肤效应系数),选用单条矩形铝导体,平放电流为1411A,集肤效应系数。当环境温度为25时,查表得温度修订系数K=1.0,则(2)热稳定校验。正常运行导体温度℃我们取=70℃,查表得C=87,则满足短路时发热的最小导体截面为满足热稳定要求。6.参考文献1.《电力工程电气设计手册》电气一次部分,水利电力西北电力设计院编;中国电力出版社。2.《发电厂电气部分课程设计参考资料》,黄纯华编;水利电力出版社。3.《电气工程基础》,刘涤尘主编;武汉理工大学出版社。4.《发电厂电气部分》(第二版)范锡普编;水利水电出版社。5.《电气工程电气设备手册》,电力工业部西北电力设计院编;中国电力出版社。6.相关电力设计规程。37
37'
您可能关注的文档
- 3008.a220kv变电站设计
- [优秀毕业论文]110kv电气一次部分的设计 变电站设计与安装
- 三维模型cad技术在电站设计中的应用
- 35kv箱式变电站设计电气主接线图毕业设计(论文)word格式
- 10kv箱式变电站设计毕业设计
- 某镇110kv变电站设计--毕业设计
- 10kv箱式变电站设计毕业设计
- 1gw太阳能电站设计
- 毕业设计(论文)-10kv变电站设计论文
- 330~750千伏智能变电站设计规范正文部分20091108
- 毕业设计(论文)-某校区10千伏变电站设计
- 35数字化变电站设计方案探讨
- 电力系统分析课程设计报告-500kv变电站设计
- 电气工程及自动化毕业设计(论文)-110kv变电站设计(含接线图)
- 机电一体化毕业设计(论文)-降压变电站设计
- 毕业设计(论文)-110千伏变电站设计
- 毕业设计(论文)-110kv变电站设计说明书
- 毕业设计(论文)-110kv变电站设计