- 1.11 MB
- 80页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'毕业设计(论文)题目:330KV枢纽变电站设计学院:电子信息学院专业班级:06级电气工程及其自动化2班指导教师:职称:讲师学生姓名:学号:
摘要本设计主要介绍了330KV枢纽变电站的整个设计过程,原则和方法。关于主变压器和主接线部分的内容是基础部分,主要介绍了主接线的形式,综合介绍了各种接线方式的特点,各自的优缺点及变压器的原则原则等,根据任务书要求最终选择满足设计任务的主接线方案。短路电流是非常重要的部分,它主要介绍了短路计算的目的,原则,方法和具体的数据信息等,为设计中需要的高压电气设备的选择、整定、校验等方面做准备。电气设备的选择及校验主要是录用对称短路的计算结果进行高压电气设备(断路器、隔离开关)的校验。以及继电保护中配置的选择、整定和校验的原则、方法等。关键词:主变压器、电气主接线、短路计算、继电保护
ABSTRACTThisdesignintroducesa330KVsubstationhubsthroughoutthedesignprocess,principlesandmethods.TransformersandwiringintheMainpartofthemainpartofthecontentisthefoundation,introducesthemainconnectionintheformofanoverviewofthecharacteristicsofdifferentconnectionmethods,theiradvantagesanddisadvantagesandtheprincipleofthetransformerprinciple,accordingtomandateofthebookchosetomeetthedesignrequirementsThemaintaskofwiringoptions.Short-circuitcurrentisaveryimportantpart,whichintroducesthepurposeofcalculatingshort-circuit,principles,methodsandspecificdatainformationforthedesignneedsofthechoiceofhighvoltageelectricalequipment,setting,checkingandsotoprepare.Selectionandverificationofelectricalequipmentismainlyemployedsymmetricalshort-circuitcalculationsforhigh-voltageelectricalequipment(circuitbreaker,disconnectingswitch)validation.Andprotectionofpowerconfigurationoptions,settingandcalibrationprinciplesandmethods.KEYWORDS:maintransformer,mainelectricalwiring,relay,settingandcalibration
目录前言1第1章绪论21.1设计的技术基础和前提21.2现行变电站设计的基本思路41.3主要设计原则4第2章主变压器及电气主接线的选择62.1主变压器的选择62.1.1主变压器型式及范围62.1.2变压器型号的表示含义82.2电气主接线的选择92.2.1电气主接线概念92.2.2电气主接线的基本要求92.2.3设计步骤和内容如下102.2.4所选电气主接线112.3无功补偿15第3章短路电流计算173.1短路电流计算173.2短路电流和短路容量173.3短路电流将引起下列严重后果173.4限制短路电流的措施183.5短路电流计算的目的和条件193.6计算过程20第4章电气设备的选择284.1电气设备选择的一般原则284.2电气设备的选择324.2.1高压断路器的选择324.2.2隔离开关的选择374.2.3电流互感器的配置和选择414.2.4电压互感器的配置和选择464.2.5各级电压母线的选择494.2.6绝缘子和穿墙套管的选择52第5章变电站继电保护53
5.1330kV配电装置535.2电气总平面布置方案535.3继电保护及微机监控系统545.3.1概述545.3.2总的技术要求575.3.3继电保护配置方案58第6章绝缘配合、过电压保护及接地616.1避雷器的配置616.2避雷器的选择616.3电气设备的绝缘配合616.3.1330kV电气设备的绝缘配合616.3.2110kV绝缘配合626.3.335kV绝缘配合646.4电气设备外绝缘及绝缘子串泄漏距离的确定646.5接地65工作总结66致谢67参考文献68附录69附图一330kV设备选型70附图二110kV设备选型71附图三35kV设备选型72附图四电气主接线73
西安工程大学本科毕业设计(论文)前言我国是世界能源消耗大国,煤炭消费总量居世界第一位,电力消费总量居世界第二位,但一次能源分布和生产力发展水平却很不均匀。水能、煤炭主要分布在西部和北部,能源和电力需求主要集中在东部和中部经济发达地区。这种能源分布与消费的不平衡状况,决定了能源必须在全国范围内优化配置,必须以大煤电基地、大水电基地为依托。实现煤电就地转换和水电大规模开发。而变电站担负着从电力系统受电,经过变压,然后分配电能的任务,是输送和分配电能的中转站,是供电系统的枢纽,在全国电网中占有特殊重要的位置。本330kV变电站设计对变电站内最重要的电气设备如主变压器、导线、电气设备等元器件,进行了比较和选择,在配电装置上采用当今较先进的GIS设备。主变压器最终为2台,追求设备寿命期内最优的经济效益。站内主接线分为330kV、110kV、和35kV三个电压等级。各个电压等级分别采用断路器接线、双母线和双母线的接线方式。电气主接线是发电厂和变电站的主要环节,电气主接线的拟定直接关系着全站电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。在短路电流方面,讲述了短路电流的危害以及三个电压等级处短路电流的计算。电气设备的选择以各种元器件如何选择参数为主,因为只要确定了器件的参数就能十分容易的根据电力手册查出元件型号。最后,还对导线截面的确定以及导线截面积的校验方法进行说明。在绝缘配合、过电压保护及接地等方面也进行了简单的设计,使变电站电气一次部分基本完成。74
西安工程大学本科毕业设计(论文)第1章绪论1.1设计的技术基础和前提自20世纪70年代330kV电网在我国西北地区出现自今,330kV电网已经成为我国西北地区的主力电网。截至2004年底,全国共投运330kV线路115条,总长度约为1070km,全网共有330kV降压变电站52座,主变压器总容量20640MVA。330kV变电站设计也相应经历了初期阶段、成长阶段和成熟阶段。330kV电网建设初期,由于出线回路少,330kV电气主接线大多才用角形接线,后来还有变压器——母线接线、双母线带旁路,发展到现在很普遍的一个半断路器接线,随着330kV电网成长为西北部骨干网架,330kV变电站的建设基本上都采用一个半断路器接线。110kV电气主接线:初期一般为双母线带旁路接线,2000年以后设计的变电站基本取消旁路母线。配电装置布置及母线选型:初期有角形立环式布置、双母线带旁路布置。到后来绝大多数采用一个半断路器中型三列式布置。初期330kV变电站大部分采用软母线,还有支持式扩径导线,20世纪90年代后,大部分采用悬挂软导线。对于110kV配电装置,早期大部分是屋外软母线中型配电装置,中型布置单列式和双列式都用应用。在后期,屋外半高型软母线单列布置也得到了广泛应用,也有部分地区采用支持式管母线、户内装配式、户内GIS等多种配电装置。总平面布置:从开始的一字型立环式布置开始也经历了很多演变,20世纪80年代开始基本上一直采用330kV配电装置、主变压器及抵低压无功补偿区和110kV配电装置的三列式布置,所区占地面积也有很大的下降。主变压器形式:主变压器均采用三相式变压器。330kV的断路器型式:初期建设的变电站大多采用柱式断路器、空气断路器等,20世纪开始80年代开始采用了进口、合资柱式、国产罐式断路器。近期建设的变电站大部分采用瓷柱式断路器、罐式断路器,个别站采用GIS型式的设备。微机监控系统:20世纪90年代新设计的变电站微机监控系统都是双机系统,分层分布式控制,这已是定居。而早期投运的微机监测也已先后完成升级改造。74
西安工程大学本科毕业设计(论文)新技术应用:高抗抽水节能、调相机、三项式主变压器、串联电容补偿在以往的工程中已经得到应用;而大容量变压器、高开断水平断路器等将仍是新技术应用的主流。从20世纪90年代中后期开始,330kV变电站设计较初期阶段也发生了较大的变化,尤其是电力系统规划设计总院组织进行的2000年示范送点变电工程设计革命,对330kV变电站设计产生了深远的影响。示范变电站设计的成果及其应用和发展基本上代表了330kV变电站的设计现状,示范变电站设计的成果已经广泛用于近年来的工程建设当中,变电站设计已经相当成熟。当时示范变电站设计的总体思路是:与国际国内电力体制改革趋势相适应,与国际科技发展水平相一致,与可持续发展思路相吻合;依靠科技进步,缩小与世界先进水平差距,使设计方案更紧凑、更集约、更高效;在安全可靠前提下,突出体现经济性,合理性,先进性。电气主接线:一个半断路器接线仍是330kV的主要推荐接线,具体工程也可因地制宜的采用技术经济合理的其他方案,如出线双断路器、变压器母线组接线等。配电装置:示范变电站设计对配电装置和设备选型进行了深入研究,在安全可靠的前提下尽量压缩配电装置的尺寸。计算机监控系统:2000年示范变电站设计对监控系统配置方案、常规控制与计算机监控系统的技术经济比较、二次设备分散布置、保护继电器小室抗干扰措施等方面进行了深入的研究。330kV变电站设计发展到今天,电气主接线、配电装置布置优化和母线选型、电气总平面布置的协调紧凑、计算机监控系统等方面已经发展的相当成熟,今后设计的发展趋势在以下几个方面:从未来的变电站的发展趋势来讲,采用集成智能化电力设备,由于控制、保护、通信等微电子设备与高电压大电流主设备安装于一体,因此满足电磁兼容性要求将成为重要的技术关键。在布置方面,建设与环境协调友好的变电站将变得越来越重要,控制变电站噪声、电磁干扰及减少变电站对周围景观的影响也会日益受到重视。主变压器方面继续采用三相变压器。断路器的选型:目前和将来很长一段时间内,瓷柱式断路器、罐式断路器、HGIS、GIS、仍是主要的断路器型式。随着国家经济实力的提升,用户对供电安全性和可靠性要求日益提高,国家对环保的高度重视和土地使用政策的日趋严格,设计必须着重考虑选用安全性和可靠性高、节约占地、适于紧凑化布置和造价比较合理的断路器型式。74
西安工程大学本科毕业设计(论文)布置方面,一方面,按工程主接线、进出条件和规划,充分吸取以往变电站的设计经验,因地制宜的优化配电装置;另一方面,根据工程选站的结论和电气配电装置的选型,结合站址的环境、地理位置、交通等条件,充分比较并优化总布置方案,从而做到布局合理、出线顺畅、节约占地、减少土方、减少拆迁、与环境协调等等。综上所述,330kV变电站设计发展过程、现状及发展趋势将是330kV变电站设计原则确定的重要参考依据。变电工程设计的发展和成熟工程经验的积累构成了330kV变电站设计的技术基础和前提。1.2现行变电站设计的基本思路(1)设计模块的划分。模块化设计的设计思想是变电工程设计技术经验的总结和发展。330kV变电站总平面的布置形式是以330kV配电装置区、主变压器及低压无功补偿设备区和110kV配电装置区等功能区构成的三列布置格局。这三个功能区即能相互独立,又相互关联和制约,不仅构成了变电站总平面的基本模块,也构成模块化设计的基本元素。其独立性是构成设计模块的基本条件,其关联性又形成了模块设计的互相制约。变电工程的这一基本特征是开展模块化设计的基础和前提,也是确定设计模块的基本原则。从电气的一次布置和总平面布置区域划分的角度出发,330kV配电装置区设计模块、主变压器及低压无功补偿设备区设计模块和110kV配电装置区设计模块是变电工程设计的三个基本模块。(2)上述设计模块的基本定义。330kV配电装置区设计模块是指进出线门形架为界、以区域环形道路为平面分界的区域,内容包括配电装置设计、构支架结构设计、电缆沟及地下设施设计、继电器小室布置及结构设计等内容。330kV高压并联电抗器及其回路内电气设备布置区也是该模块的设计内容,是一个子模块,本设计只做具体的模块设计,在平面布置中假定安装于其中一回线路,在具体的工程设计中,应根据电力系统条件接入不同线路时其布置位置需相对变化。主变压器及其低压无功补偿设备区设计模块是指以主变压器高中压侧引线构架为界、以区域环形道路为平面分界的区域,内容包括主变压器安装及各侧引线设计、低压无功补偿设备及配电装置设计等内容。1.3主要设计原则变电站设计的原则是:安全可靠、技术领先、投资合理、标准统一、运行高效。为此,在设计中,要注意处理和解决设计方案的统一性、适应性、灵活性、先进性、可靠性和经济性及其相互之间的辩证统一关系。74
西安工程大学本科毕业设计(论文)统一性:建设标准统一,基建和生产运行的标准统一,外部形象风格要体现国家标准。适应性:设计要综合考虑各地区的实际情况,并能在一定的时间内,对不同规模、型式、外部、典型设计模块间接口灵活,增减方便,组合型式多样,概算调整方便。先进性:设计方案、设备选型先进、合理,占地少、注重环保,变电站可比技术经济指标先进。可靠性:适当提高设备水平,保证变电站设备的可靠性,保证设备、各个模块和模块并接后系统的可靠性,以确保设计方案的安全可靠性。经济性:按照企业利益最大化原则,综合考虑工程初期投资和长期运行费用,追求寿命期内最优的企业经济效益。设计要树立全局意识、大局意识和企业意识,要坚持“基建为生产服务”、“以人为本”和“可持续发展”的理念,当前的重点是“节约占地、节约投资、提高效率、降低运营成本”。具体设计要综合考虑“每个设备的合理性、每个布置的合理性、每项改进的合理性、每个方案的合理性”。74
西安工程大学本科毕业设计(论文)第2章主变压器及电气主接线的选择2.1主变压器的选择2.1.1主变压器型式及范围(1)绕组数量的确定原则在具有三种电压的变电站中,如通过主变压器各侧绕组的功率均达到该变压器容量的15%以上或低压侧虽无负荷,但在变电站内需设无功补偿设备时,主变压器宜采用三绕组变压器。(2)主变压器台数的确定原则①对于大城市郊区的一次变电站在中低压侧已构成环网的情况下,变电所以装设两台变压器为宜。②对地区性孤立的一次变电所或大型工业专用变电所在设计时应考虑装设三台变压器。③对于规划只装设两台变压器的变电站,其变压器基础宜按大于变压器容量的1—2级设计,以便负荷发展时,更换变压器的容量。由前设计说明可知、正常运行时,变电站负荷由330kV系统供电,为提高负荷供电可靠性,并考虑到现今社会用户需要的供电可靠性的要求更高,最终应采用三台容量相同的变压器并联运行。(3)变压器容量和型号确定主变压器容量一般按变电站建成后5-10年规划负荷选择,并适当考虑到远期10-20年的负荷发展,对于城市郊区变电站,主变压器应与城市规划相结合。变电站主变压器的选择原则有以下几点:①在变电站中,一般装设两台主变压器;终端或分支变电站,如只有一个电源进线,可只装设一台主变压器;对于330、550kV变电站,经技术经济为合理时,可装设3-4台主变压器。②对于330kV及以下的变电站,在设备运输不受条件限制时,均采用三相变压器。500kV变电站,应经技术经济论证后,确定是采用三相变压器,还是单相变压器组,以及是否设立备用的单相变压器。74
西安工程大学本科毕业设计(论文)③装有两台及以上主变压器的变电站,其中一台事故停运后,其余主变压器的容量应保证该所全部负荷的70%到80%,并应保证用户的一级和全部二级负荷的供电。④具有三种电压等级的变电站,如各侧的功率均达到主变压器额定容量的15%以上,或低压侧虽无负荷,但需装设无功补偿设备时,主变压器一般先用三绕组变压器。⑤110kV及以上中性点直接接地系统连接的变压器,一般优先选用自耦变压器,当自耦变压器的第三绕组接有无功补偿设备时,应根据无功功率的潮流情况,校验公共绕组容量,以免在某种运行方式下,限制自耦变压器输出功率。⑥330kV变电站可选用自耦强迫油循环风冷式变压器。主变压器的阻抗电压(即短路电压),应根据电网情况、断路器断流能力以及变压器结构选定。对于深入负荷中心的变电站,为简化电压等级和避免重复容量,可采用双绕组变压器。(4)绕组连接方式的确定原则我国330kV及以上电压、变压器都采用Y。连接,110kV采用Y连接,其中性点经消弧线圈接地、35kV以下电压变压器绕组都采用△连接。根据选择原则可确定所选择变压器绕组接线方式为Y/Y/△接线。综上所述,并考虑到本次设计的三个电压等级,查330kV三相三绕组电力变压器技术时数据表,选择变压器的型号为OSFPSZ10-/330,OSFPSZ10-/330,其参数见表1-1,1-2.表1-1主变压器1技术参数项目技术参数备注主变压器型号三相、三绕组、有载调压、油浸、风冷、自耦电力变压器OSFPSZ10-/330额定容量240MVA容量比240/240/72MVA电压比345/121/38.5kV电压比及短路阻抗应根据实际工程选择短路阻抗Uk1-2%=10.5Uk1-3%=24Uk2-3%=13连接组别YNa0dll调压方式有载调压冷却方式ONAF或ODAF中性点接地方式及绝缘水平直接接地高、中及中性点均副套管式电流互感器74
西安工程大学本科毕业设计(论文)表1-2主变压器2技术参数项目技术参数备注主变压器型号三相、三绕组、有载调压、油浸、风冷、自耦电力变压器OSFPSZ10-/330额定容量360MVA容量比360/360/90MVA电压比345/121/38.5kV电压比及短路阻抗应根据实际工程选择短路阻抗Uk1-2%=13Uk1-3%=25Uk2-3%=10.5连接组别YNa0dll调压方式有载调压冷却方式ONAF或ODAF中性点接地方式及绝缘水平直接接地高、中及中性点均副套管式电流互感器2.1.2变压器型号的表示含义根据我国电力变压器国家标准,变压器型号由两部分组成:前一部分描述变压器的类别、结构、特征和用途,有汉语拼音字母组成;后一部分描述变压器的容量(单位为kVA)和绕组的电压等级。例如:OSFPZ9-O—自耦;S—三相;F—箱壳外冷却介质为风冷;P—油循环方式为强迫循环;Z—有载调压74
西安工程大学本科毕业设计(论文)2.2电气主接线的选择2.2.1电气主接线概念电气主接线是由电气设备通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流、高电压的网络,故又称为一次接线或电气系统。主接线代表了发电厂或变电站电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性并对电器选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。2.2.2电气主接线的基本要求(1)可靠性具体要求:①断路器检修时,不宜影响对系统的供电。②断路器或母线故障以及母线检修时,尽量减少停运的回路数和停运时间,并要保证对一级负荷及全部或大部分二级负荷的供电。③尽量避免发电厂。变电所全部停运的可能性。④大机组超高压电气主接线应满足可靠性的特殊要求。(2)灵活性主接线应满足在调度、检修及扩建时的灵活性。①调度时,应可以灵活地投入和切除发电机、变压器和线路,调配电源和负荷,满足系统在事故运行方式、检修运行方式以及特殊运行方式下的系统调度要求。②检修时,可以方便地停运断路器、母线及其继电保护设备,进行安全检修而不致影响电力网的运行和对用户的供电。③扩建时,可以容易的从初期接线过渡到最终接线。在不影响连续供电或停电时间最短的情况下,投入新装机组、变压器或线路而不互相干扰,并且对一次和二次部分的改建工作量最少。(3)经济性①投资省a)主接线应力求简单,以节省断路器、隔离开关、电流和电压互感器。避雷器等一次设备。b)要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。74
西安工程大学本科毕业设计(论文)a)要能限制短路电流,以便于选择价廉的电气设备或轻型电器。b)如能满足系统安全运行及继电保护要求,110kV及以下终端或分支变电所可采用简易电器。②占地面积少主接线要为配电装置布置创造条件,尽量使占地面积减少。③电能损耗少经济合理地选择主变压器的种类、容量、数量,要避免因两次变压而增加电能损失。此外系统规划设计中,要避免建立复杂的操作枢纽,为简化主接线,发电厂、变电所接入系统的电压等级一般不超过两种。电气主接线关系着全站电气设备的选择,配电装置的布置继电保护及自动装置的确定,关系着电力系统的安全稳定,灵活和经济运行,是本次变电站设计中心的主要环节,我们在电气主接线设计中,依据以下原则:①保证必要的供电可靠性和电能质量。②具有运行维护的灵活性和方便性,即要适应各种运行方式和检修维护方面的要求,并能灵活地进行运行方式的转换。在操作时简便、安全,不易发生误操作。③在满足可靠性、灵活性要求的前提下做好经济性。即投资省,电能损失小,占地面积小。④保证电气主接线具有继续发展和扩建的可靠性。2.2.3设计步骤和内容如下(1)对原始资料分析①工程情况,包括发电厂类型,设计规划容量,单机容量及台数,最大负荷利用小时数及可能的运行方式等。②电力系统情况,包括电力系统近期及远景发展规划(5~10年),发电厂或变电站在电力系统中的地位和作用,本期工程和远景与电力系统连接方式以及各级电压中性点接地方式等。③负荷情况,包括负荷的性质及其地理位置、输电电压等级、出线回路数及输送容量等。④74
西安工程大学本科毕业设计(论文)环境条件,包括当地的气温、湿度、覆冰。污秽、风向、水文、地质、海拔高度及地震等因素,对电气主接线中电气设备的选择和配电装置的实施均有影响。对此,应予以重视,对重型设备的运输条件亦应充分考虑。①设备供货情况。(1)主接线方案的拟定与选择根据设计任务书的要求,在原始资料分析的基础上,根据对电源和出线回路数、电压等级、变压器台数、容量以及母线结构等不同的考虑,可拟定出若干个主接线方案。依据对主接线的基本要求,从技术上论证并淘汰一些明显不合理的方案,最终保留2~3个技术上相当,又都能满足任务书要求的方案,在进行经济比较。对于在系统中占有重要地位的大容量发电厂或变电站主接线,还应进行可靠性定量分析计算比较,最终确定出在技术上合理、经济上可行的最终方案。(2)短路电流计算和主要电器选择对选定的电气主接线进行短路电流计算,并选择合理的电气设备。(3)绘制电气主接线图对最终确定的主接线,按工程要求,绘制工程图。(4)编制工程概算概算的编制以设计图纸为基础,以国家颁布的《工程建设预算费用的构成及计算标准》、《全国统一安装工程预算定额》、《电力工程概算指标》以及其他有关文件和具体规定为依据,并按国家定价与市场调整或浮动价格相结合的原则进行。概算的构成主要有以下内容:①主要设备器材费,包括设备原价、主要材料费、设备运杂费、备品备件购置费,生产器具购置费等。②安装工程费,包括直接费、间接费和施工机械使用费等。③其他费用。2.2.4所选电气主接线1)330kV主接线的选择330KV主接线的选择既考虑上述主要原则,同时结合国内长期运行的实践经验,确定其主接线形式为3/2断路器接线,因为其具有很高的可靠性,且目前我国330KV及以上系统广泛采用,实践证明其有很高的可靠性和运行灵活性,且330KV、SF6、DF价格较高,分相式断路器占地面积较大,因此比双断路器接线有显著的经济性。74
西安工程大学本科毕业设计(论文)经技术经济比较采用一台半断路器的接线方式,为使母线潮流分布合理并在一串支路切除时保持系统功率平衡,在接线上,在一串上接一条电源线和一条负荷线路,并使靠近一组母线的支路送电与受电平衡,最终按4个完整串布置,二台主变分别引接至两组母线。该接线具有可靠性高,运行灵活,节省占地等优点。图2-1一个半短路器的接线1)110KV主接线的选择方案(一):采用单母线接线(图2-2)其优点:简单清晰、设备少、投资少、运行操作方便、且有利于扩建。缺点是:(1)当母线或母线隔离开关检修或发生故障时,各回路必须在检修和短路被消除之前的全部时间内停止工作,造成经济损失很大。(2)引出线电路中断路器检修时,该回路停止供电。图2-2图2-374
西安工程大学本科毕业设计(论文)方案(二):桥形接线(图2-3)110kV侧以双回路与系统相连,而变电站最常操作的是切换变压器,而与系统联接的线路不易发生故障或频繁切换,因此可采用内桥式线,这也有利于以后变电站的扩建。优点是:高压电器少,布置简单,造价低,经适当布置可较容易地过渡成单母线分段或双母线分接线。缺点是:可靠性不是太高,切换操作比较麻烦。方案(三):双母线接线(图2-4)优点:(1)供电可靠,通过两组母线隔离开关的倒换操作,可以轮流检修一组母线而不至于供电中断,一组母线故障后能迅速恢复供电,检修任一组的母线隔离开关时只停该回路。(2)调度灵活,当双母线的两组母线同时工作时,通过母线联络断路器并联运行,电源与负荷平均分配在两组母线上。当母线联络断路器断开后,变电站负荷可同时接在主母线或副母线上运行。缺点:当母线故障或检修时,将隔离开关运行倒闸操作,容易发生误操作事故,为了防止误操作隔离开关,需在隔离开关和断路器之间装设可靠的联锁装置,同时其经济代价较高。这种接线方式主要用于出线回路较多,供电可靠性要求较高的变电站中。图2-4图2-5方案(四):多角形接线74
西安工程大学本科毕业设计(论文)多角形接线的断路器数等于电源回路和出线回路的总数,断路器接成环形电路,电源回路和出线回路都接在2台断路器之间,多角形接线的“角”数等于回路数,也就等于断路器数。①多角形接线的优点:a)投资省,平均每回路只需装设一台断路器。b)没有汇流母线,在接线的任一段上发生故障,只需切除这一段及与其相连接的元件,对系统运行的影响较小。c)接线车管闭合环形,在闭环运行时,可靠性灵活性较高。d)每回路有两台断路器供电,任一台断路器检修,不需中断供电,也不需旁路设施。隔离开关只作为检修时隔离只用,以减少误操作可能性。e)占地面积小。多角形接线占地面积约是普通中型双母线带旁路母线接地线的40%,对地形狭窄地区和地下洞内布置较合适。②缺点:a)任一台断路器检修,都成开环运行,从而降低了接线的可靠性。因此,断路器数量不能多,即进出线回路数要受到限制。b)每一进出线回路都连接着两台断路器,每一台断路器又连着两个回路,从而使继电保护和控制回路较单、双母线复杂。c)对调峰电站,为提高运行可靠性,避免经常开环运行,一般开、停机需由发电机出口断路器承担,由此需增设发电机出口断路器,并增加了变压器空载损耗。适用范围:适用于最终进出线为3~5回的110kV及以上配电装置。不宜用于有在扩建可能的发电厂、变电所中。采用双母线接线,不带旁路母线,选择该主接线是因为:①可以轮流检修母线,而不中断对用户的供电。②当一组母线故障时,仍然造成接于该组母线上的支路停电,但可以迅速切换至另一组母线上恢复工作,从而减少停电时间。③检修任一回路的母线隔离开关时,只需断开该回路和与此隔离开关相连的母线,将其他所有回路部分换到另一组母线上运行,该隔离开关可停电进行检修。④检修任一出线断路器时,该支路短时停电,在断路器两侧加上跨条后,将各支路倒控在一条母线上工作,利用母联断路器代替该出线断路器工作,使该回路不必长时间停电。⑤在个别回路需要独立工作或进行试验时,可将该回路分别单独接到一组母线上。⑥双母线扩建方便,向双母线左右任一方向扩建,均不影响两组母线的电源和负荷均可分配1)35kV主接线的选择74
西安工程大学本科毕业设计(论文)35KV共有10回出现,根据《毕业设计指导资料》P67页,35KV出线有8回及以上时,宜采用双母线,单母分段或者双母线带旁路接线方法。比较以上三种接线,双母线及双母线带旁路接线,供电可靠想高,任一回路开关故障或检修,或任一回线故障或检修,都不影响用户用电,但是倒闸操作复杂,造价高,单母线分段接线,接线简单,操作方便,便于扩建,在一定程度上也能提高供电可靠性,但是当一段母线上刀闸检修时,该段母线上的全部出线端都要长时停电,对于本所35KV出线用户均为一级,为保证对这些重要用户得供电,采用双母线接线方式。经过以上论证,决定采用双母线接线。因此,330千伏、110千伏为直接接地系统,35千伏为不接地系统。2.3无功补偿(1)无功功率概念无功功率:无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。单位为乏(var)或千乏(kvar),分为感性无功功率和容性无功功率。(2)无功补偿的总原则:全面规划,合理布局,分散补偿,就地平衡。改变以往自上而下的补偿为自下而上的补偿,并根据国家及有关部门的规定,按以下原则进行:电力用户补偿与供电企业补偿相结合,供电部门在电源点进行补偿与用户自身用电设备进行补偿,两者实现理想配合。分散补偿与集中补偿相结合,以分散补偿为主;高压补偿与低压补偿相结合,以低压补偿为主,实现区域电网内的无功分层、分压、就地平衡。降损与调压相结合,以降损为主,坚持降损节能的原则。(3)无功补偿的意义①补偿无功功率,可以增加电网中有功功率的比例常数;②减少发,供电设备的设计容量,减少投资;③降低线损,由公式△P%=(1-cosΦ1/cosφ2)×100%得出,其中cosΦ174
西安工程大学本科毕业设计(论文)为补偿后的功率因数,cosφ2为补偿前的功率因数则cosΦ1>cosφ2,功率因数提高后,线损率也随之下降。减少设计容量,减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益.所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行.(1)装设无功补偿装置的原因在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。(2)无功补偿装置分类①并联电容器:只能向系统供应感性无功功率。优点:灵活控制系统电压,控制系统稳定性。缺点:调节精度差。②调相机:只能发无功功率的发电机。优点:调节精度好。缺点:调节速动慢,产生高次谐波。③静止补偿器:优点;反应速度快。缺点:产生高次谐波。④调相机:优点:电压调节效应优。缺点:调节精度差,不灵活。并联电抗器:对高压远距离输电线路可以提高输送能力,降低过电压。74
西安工程大学本科毕业设计(论文)第3章短路电流计算3.1短路电流计算短路电流计算中,容量和接线均按最终规模计算,短路种类按系统最大运行方式下三相短路较验。本设计设备选择的短路电流是按变电所最终规模及330千伏、110千伏系统阻抗进行计算的。经短路电流计算,在330千伏变电所可能发生的各种短路类型中,330千伏母线发生三相对称短路时,短路电流最大,110千伏母线发生单相接地短路时,短路电流最大。3.2短路电流和短路容量电力系统在运行中,相与相之间或相与地(或中性线)之间发生正常连接(短路)时流过的电流叫短路电流。在三相系统中发生短路的基本类型有三相短路、两相短路、单相对地短路和两相对地短路。三相短路因短路时的三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相电路不对称,故称为不对称短路。在中性点直接接地的电力网中,以一相对地的短路故障为最多,约占全部短路故障的90%。在中性点非直接接地的电力网络中,短路故障主要是各种相间短路。发生短路时,由于电源供电回路阻抗的减小以及突然短路时的暂态过程,使短路回路中的电流大大增加,可能超过回路的额定电流许多倍。短路电流的大小取决于短路点距电源的电气距离。例如,在发电机端发生短路时,流过发电机的短路电流最大瞬时值可达发电机额定电流的10~15倍,在大容量的电力系统中,短路电流可高达数万安培。反映电力系统某一供电点电气性能的一个特征量叫做短路容量。表达式为:Wk=UNIK式中,WK—短路容量,MVA;UN—短路点正常运行故障前的线电压,kVIK—发生三相短路故障时的短路电流,kA若UN、IK取标么值和、则该点短路容量的标么值为Wk=*;由于UN接近于1,所以WK的倒数即该供电点的短路阻抗标么值为:==K*;3.3短路电流将引起下列严重后果74
西安工程大学本科毕业设计(论文)(1)短路电流往往会有电弧产生,它不仅能烧坏故障元件本身,也可能烧坏周围设备和伤害周围的人员。(2)巨大的短路电流通过导体时,一方面会使导体大量发热,造成导体过热甚至熔化,以及绝缘损坏;另一方面巨大的短路电流还将产生很大的电动力作用于导体,使导体变形或损坏。(3)短路也同时引起系统电压大幅度降低,特别是靠近短路点处的电压降低得更多,从而可能导致部分用户或全部用户的供电遭到破坏。网络电压的降低,使供电设备的正常工作受到损坏,也可能导致工厂的产品报废或设备损坏,如电动机过热受损等。(4)电力系统中出现短路故障时,系统功率分布的突然变化和电压的严重下降,可能破坏各发电厂并联运行的稳定性,使整个系统解列。这时某些发电机可能过负荷,因此,必须切除部分用户。短路时电压下降的愈大,持续时间愈长,破坏整个电力系统稳定运行的可能性愈大。3.4限制短路电流的措施为保证系统安全可靠的运行,减轻短路造成的影响,除在运行维护中应努力设法消除可能引起短路的一切原因外,还应尽快地切除短路故障部分,使系统电压在较短的时间内恢复到正常值。为此,可采用快速动作的继电保护和断路器,以及发电机装设自动调节励磁装置等。此外,还应考虑采用限制短路电流的措施,如合理选择电气主接线的形式或运行方式,以增大系统阻抗,减少短路电流值;加装限电流电抗器;采用分裂低压绕阻变压器等。(1)作好短路电流的计算,正确选择及校验电气设备,电气设备的额定电压要和线路的额定电压相符。(2)正确选择继电保护的整定值和熔体的额定电流,采用速断保护装置,以便发生短路时,能快速切断短路电流,减少短路电流持续时间,减少短路所造成的损失。(3)在变电站安装避雷针,在变压器附近和线路上安装避雷器,减少雷击损害。(4)保证架空线路施工质量,加强线路维护,始终保持线路弧垂一致并符合规定。(5)带电安装和检修电气设备,注意力要集中,防止误接线,误操作,在带电部位距离较近的地方工作,要采取防止短路的措施。(6)加强管理,防止小动物进入配电室,爬上电气设备。(7)及时清除导电粉尘,防止导电粉尘进入电气设备。74
西安工程大学本科毕业设计(论文)(8)在电缆埋设处设置标记,有人在附近挖掘施工,要派专人看护,并向施工人员说明电缆敷设位置,以防电缆被破坏引发短路。(9)电力系统的运行、维护人员应认真学习规程,严格遵守规章制度,正确操作电气设备,禁止带负荷拉刀闸、带电合接地刀闸,线路施工,维护人员工作完毕,应立即拆除接地线。要经常对线路、设备进行巡视检查,及时发现缺陷,迅速进行检修。3.5短路电流计算的目的和条件(1)短路电流计算的目的:在发电厂和变电站的设计中,短路计算是其中的一个重要环节。其计算的目的主要有以下几个方面:①电气主接线的比较。②选择导体和电器。③在设计屋外高型配电装置时,需要按短路条件校验软导线的相间和相对地的安全距离。④在选择继电保护方式和进行整定计算时,需以各种短路时的短路电流为依据。⑤接地装置的设计,也需要用短路电流。(2)短路电流计算条件的基本假定:①正常工作时,三相系统对称运行;②所有电源的电动势相位相角相同;③电力系统中的所有电源都在额定负荷下运行;④短路发生在短路电流为最大值的瞬间;⑤不考虑短路点的电弧阻抗和变压器的励磁电流;⑥除去短路电流的衰减时间常数和低压网络的短路电流外,元件的电阻都略去不计;⑧元件的计算参数均取其额定值,不考虑参数的误差和调整范围;⑨输电线路的电容忽略不计。(3)一般规定:①验算导体和电器动稳定、热稳定以及电器开断电流所用的短路电流,应本工程设计规划容量计算,并考虑远景的发展计划;②选择导体和电器用的短路电流,在电气连接的网络中,应考虑具有反馈作用的异步电动机的影响和电容补偿装置放电电流的影响;74
西安工程大学本科毕业设计(论文)③选择导体和电器时,对不带电抗器回路的计算短路点应选择在正常接线方式时短路电流为最大的地点;④导体和电器的动稳定、热稳定以及电器的开断电流,一般按三相短路验算。3.6计算过程基准值为SB=1000MVA,UB=Uav,330KV侧取345KV,110KV侧取115KV,35KV侧取38.5KV.其等效图为对OSFPSZ10—/330主变压器:Uk1%=1/2[Uk(1-2)%+Uk(1-3)%-Uk(2-3)%]=1/2(10.5+13-24)=-0.25Uk2%=1/2[Uk(2-3)%+Uk(2-1)%-Uk(1-3)%]=1/2(24+10.5-13)=10.75Uk3%=1/2[Uk(3-1)%+Uk(3-2)%-Uk(1-2)%]=1/2(13+24-10.5)=13.2574
西安工程大学本科毕业设计(论文)对OSFPSZ10-/330主变压器:Uk1%=1/2[Uk(1-2)%+Uk(1-3)%-Uk(2-3)%]=1/2(13+25-10.5)=13.75Uk2%=1/2[Uk(2-3)%+Uk(2-1)%-Uk(1-3)%]=1/2(13+10.5-25)=-0.75Uk3%=1/2[Uk(3-1)%+Uk(3-2)%-Uk(1-2)%]=1/2(25+10.5-13)=11.25X4===0.384X5===-0.02X6===1.25d1短路时(330KV母线)其等效电路图为转化为74
西安工程大学本科毕业设计(论文)再转化为再转化为短路电流有名值冲击电流式中Ksh——冲击系数。实际电路中,1变电站最大长期工作电流IgmaxIgmax===1469.66A(考虑变压器事故过负荷的能力40%)74
西安工程大学本科毕业设计(论文)(3)根据有关资料选择SFMT-300型断路器表4-1线路参数统计表电压等级(kV)短路点编号工作电压(kV)工作电流(A)短路电流周期分量起始有效值(kA)短路电流冲击(kA)3S热稳定电流(kA)330d13301469.669.4023.92根据上述参数参照设备手册可选出断路器型号为:SFMT-300,具体参数见设备选择一览表。表4-2高压断路器选择表设备型号短路点编号额定电压(kV)工作电流(A)短路电流周期分量起始有效值(kA)短路电流冲击值(kA)3S热稳定电流(kA)SFMT-300d133025004010040(4)校验:①Ue=330kV=UN②I=2500A>1469.66A③额定开断电流校验:330kV母线三相稳态短路电流I`=9.40KASFMT-300断路器的额定开断电流等于40KA符合要求。④动稳定校验:330kV母线短路三相冲击电流:ich=23.92(kA)SFMT-300断路器的极限通过电流Igf=100(kA)ich1s,所以tdz=tz=1.85s330kV母线短路热容量:Qdt=I`2tep=9.42*1.85=163.466(kA2S)SFMT-300断路器的3秒热稳定电流:It=40(kA)It2t=402×3=4800(kA2S)I`2tepIgmax=3149A③额定开断电流校验:110kV母线三相稳态短路电流I`=30.063KALW6-110I断路器的额定开断电流为50KA符合要求。④动稳定校验:110kV母线短路三相冲击电流:ich=76.516(kA)LW6-110I断路器的极限通过电流Igf=125(kA)ichIgmax=2672.39A③额定开断电流校验:35kV母线三相稳态短路电流I`=20.395KAZN-40.5/4000断路器的额定开断电流=25KA符合要求。④动稳定校验:35kV母线短路三相冲击电流:ich=51.91(kA)ZN-40.5/4000断路器的极限通过电流Igf=80(kA)ich变电所最大长期工作电流Igmax(3)根据有关资料选择GW6-330GD/2500型隔离开关表4-8GW6-330GD/2500隔离开关参数74
西安工程大学本科毕业设计(论文)型号技术参数额定电流I(A)极限通过电流Igf(kA)3秒热稳定电流(kA)GW6-330GD/250025008040(4)校验:①Ue=330kV=UN①I=2500kA>1496.66kA③动稳定校验:330kV母线短路三相冲击电流:ich=53.55(kA)GW6-330GD/2500隔离开关的极限通过电流Igf=80(kA)ichIgmax=3149A③动稳定校验:110kV母线短路三相冲击电流:ich=30.063(kA)GW25-110/4000隔离开关的极限通过电流Igf=100(kA)ichIgmax=A③动稳定校验:35kV母线短路三相冲击电流:ich=51.91(kA)GW25-35/4000隔离开关的极限通过电流Igf=100(kA)ich1.4,可满足要求。8.4过电压保护本设计全站采用在330kV配电装置架构、110kV配电装置架构上设置避雷针及在站内设置独立避雷针进行联合直击保护。为了防止反击,在主变压器架构上不设避雷针,另设独立避雷针,与330kV和110kV配电装置构架上的避雷针构成联合保护网,来保护主变压器和35kV设备及其连接导线。避雷针、避雷线柱高度统计如下。(1)330kV出线架构:构架避雷针高32m,避雷线柱高23.5m;(2)110kV出线架构:构架避雷针高25m,避雷线柱高12.5m;(3)独立避雷针高32m。6.4电气设备外绝缘及绝缘子串泄漏距离的确定根据站址污秽等级安全按Ⅲ级考虑要求,依据GB/T16424-1996中规定,对Ⅲ74
西安工程大学本科毕业设计(论文)级污秽地区,330kV及110kV设备外绝缘取泄露比距为25mm/kV,对中性点非有效接地系统的35kV设备外绝缘泄露比距离为31mm/kV,爬电距离按最高电压值为基准值,为此,各电压等级爬电距离如下。330kV:9075mm;110kV:3150mm;35kV:1256mm。绝缘子串的选择。依据最高运行电压和泄露比距选择绝缘子串片数,根据导线载荷大小,本设计330kV、110kV选用单串12t、6t的悬式绝缘子,型号为XWP-120、XWP-160。单片绝缘子的爬电距离为450mm。据此,计算如下。330kV绝缘子串片数:25×363/450=21;110kV绝缘子串片数:25×126/450=7。根据计算结果,再考虑零值绝缘子片数,330kV绝缘子串片数取22片,110kV绝缘子串片数取8片。6.5接地变电站的接地装置设计与站区土壤电阻率、短路电流值有很大的关系,故本次设计对接地装置设计不做推荐。接地装置的材料目前主要有铜材和镀锌扁钢,选材对接地电阻值几乎不产生影响,主要决定性因素取决于土壤的腐蚀性和接地装置的使用年限。GIS对接地装置要求较高,最好选这铜材。74
西安工程大学本科毕业设计(论文)工作总结毕业设计是在完成了理论课程和毕业实习的基础上对所学知识一次综合性的总结,是工科学生完成基础课程之后,将理论与实践有机联系起来的一个重要环节,是为以后走向工作岗位能更好的服务社会打下基础是重要环节。经过四年大学的理论知识的学习,及各种与专业相关的试验、实习的操作,还有老师的谆谆教诲,我对电力系统的各个方面有了初步的认识了解。两个多月的毕业设计,使我了解了设计的要求,设计内容,更加深刻的了解了课中的内容,使理论与实际相结合。尤其对主接线设计、短路电流的计算、相关高压电器设备的选型、校验等有了进一步的掌握。在这两个多月的时间里,我仔细研读了设计任务书,并大量查阅变电站设计相关资料如工程电气设备手册、电气设计手册,并结合发电厂电气部分、电力系统稳态分析、电力系统暂态分析等教材,了解到设计变电站主接线的程序、步骤,及各种主接线形式的优、缺点,并依据电气主接线设计原则,确定电气主接线;然后进行短路电流计算,并根据计算结果选择电气设备并校验。最后还要根据本次设计画出CAD图。经过此次设计,使我对电气部分知识更加系统化、条理化。同时也培养了自己独立思考问题的能力和实践动手能力,对自己所学的专业知识也是一次检验和巩固,整个过程我受益匪浅。毕业设计的过程也是我学到不少学习的方法,有效的培养了自己分析问题、解决问题的能力,并使专业知识得到巩固和升华。通过绘制完整的电气主接线AutoCAD图,我很好的掌握了一些常用的作图规范,提高了自己的绘图能力。在整个毕业设计的过程中我学到做任何事情所要有的态度和心态,首先做学问要一丝不苟,对于出现的任何问题都不能轻视,要通过正确的方法去解决,同时,也要有耐心和毅力。此次论文由于时间和本身知识的限制,还有很多不足,但是我在做论文的过程中却领悟到了求学严谨的态度,要不怕困难。同时,这次设计也是对我实际能力的一次提升,对我未来的学习和工作有很大的帮助。74
西安工程大学本科毕业设计(论文)致谢本设计的完成是在我们的导师张永宜老师的细心指导下进行的。在每次设计遇到问题时张老师不辞辛苦的讲解才使得我的设计顺利的进行。从设计的选题到资料的搜集直至最后设计的修改的整个过程中,花费了张老师很多宝贵的时间和精力,在此向导师表示衷心地感谢!张老师严谨的治学态度,开拓进取的精神和高度的责任心都将使学生受益终生!同时,还要感谢和我同一设计小组的几位同学,是你们在我平时设计中和我一起探讨问题,并指出我设计上的误区,使我能及时的发现问题把设计顺利的进行下去,没有你们的帮助我不可能这样顺利地结稿,在此表示深深的谢意。74
西安工程大学本科毕业设计(论文)参考文献[1]陈小虎.工厂供电技术.北京:高等教育出版社,2001[2]居荣.供配电技术.北京:化学工业出版社,2005[3]谢毓城.电力变压器手册.北京:机械工业出版社,2003[4]陈跃.电气工程专业毕业设计指南—电力系统分册.北京:中国水力水电出版社,2003[5]韩笑.电气工程专业毕业设计指南—继电保护分册.北京:中国水力水电出版社,2003[6]潘忠林.现代防雷技术.北京:电子科技大学出版社,1997[7]张伟钹等.电力系统过电压与绝缘配合.北京:清华大学出版社,1988[8]贺家李等.电力系统继电保护原理.北京:中国电力出版社,2005[9]刘笙.电气工程基础.北京:科学出版社,2002[10]LarryFDrbal,PowerPlantEngineering.UK:Springer,1996[11]MichaelBrumbach,JohnMNadon.IndustrialElectricity.Cambridge:Technology,2005[12]陆演白等.电力工程施工组织设计手册—火电卷.北京:中国水力水电出版社,2003[13]吕庆荣等.电气识图.北京:化学工业出版社,2005[14]舒飞.AUTOCAD2004电气设计.北京:机械工业出版社,200574
西安工程大学本科毕业设计(论文)附录附图一:330kV设备选型;附图二:110kV设备选型;附图三:35kV设备选型;附图四:电气主接线图;74
西安工程大学本科毕业设计(论文)附图一330kV设备选型名称型式参数额定电压(kV)最高工作电压(kV)额定电流(A)断开电流(kA)3s热稳定电流(kA)断路器(QF)SFMT-3002500A,40kA33036325005050隔离开关(QS)GW6-330GD/25002500A,80kA33036325008040母线电压互感器(TV)TYD-330/-0.005330363电流互感器(TA)LB-330GY1000~2000/1A3303635074
西安工程大学本科毕业设计(论文)附图二110kV设备选型名称型式参数额定电压(kV)最高工作电压(kV)额定电流(A)3s热稳定电流(kA)断路器(QF)LW6-110I3150A,50kA110126315050隔离开关(QS)GW25-110/40004000A,40A110126400040电流互感器(TA)LCW-1103000/1A11012640母线电压互感器(TV)TYD110/-0.01511012674
西安工程大学本科毕业设计(论文)附图三35kV设备选型名称型式参数额定电压(kV)最高工作电压(kV)额定电流(A)断开电流(kA)3s热稳定电流(kA)断路器ZN-40.5/40004000A,31.5kA3540.5400031.525隔离开关GW25-35/40004000A,31.5kV3540.5125031.540母线电压互感柜JDX6-353540.5电流互感器(主变进线开关柜)KYN28-12(ZT)开关柜3540.531.574
西安工程大学本科毕业设计(论文)附图四电气主接线74
西安工程大学本科毕业设计(论文)诚信声明禀承学校优良传统学风,保持我校学生一贯诚信风尚,本人郑重声明:所呈交毕业设计(论文)是在指导老师的指导下独立完成的,无抄袭和剽窃现象。特此声明。学生签名:边玉玺指导教师签名:日 期:2010年6月23日'
您可能关注的文档
- 35数字化变电站设计方案探讨
- 电力系统分析课程设计报告-500kv变电站设计
- 电气工程及自动化毕业设计(论文)-110kv变电站设计(含接线图)
- 机电一体化毕业设计(论文)-降压变电站设计
- 毕业设计(论文)-110千伏变电站设计
- 毕业设计(论文)-110kv变电站设计说明书
- 毕业设计(论文)-110kv变电站设计
- 毕业设计(论文)-35kv变电站设计
- 毕业设计(论文)-35kv箱式变电站设计
- 电力工程变电站设计
- 电气自动化毕业设计(论文)-110kv变电站设计
- 电气毕业设计(论文)-110kv电气一次部分变电站设计
- 课程设计(论文)-110kv变电站设计
- 小区电动车充电站设计方案doc
- 110kv变电站设计 毕业论文
- 110kv变电站安全距离110kv变电站设计规范
- 35kv箱式变电站设计
- 南京理工大学变电站设计