- 109.46 KB
- 9页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'习题五题5.1求下列函数的单边拉普拉斯变换,并注明收敛域。−to−t−2t(1)1-e(4)cos(2t+45)(6)esin(2t)(7)te解:(1)∞−t−st11F(S)=∫(1−e)edt=−,Re[s]>00−ss+1(4)∞o−st2s2F(S)=cos(2t+45)edt=(−),Re[s]>0∫0−2s2+4s2+4(6)∞2−t−stF(S)=esin(2t)edt=,Re[s]>−1∫0−(s+1)2+4(7)∞1−2t−stF(S)=teedt=,Re[s]>−2∫0−(s+2)2题5.2求下列图示信号的拉普拉斯变换。f(t)f(t)f(t)sin(πt)ttt(b)(e)(f)解:(b)Qf(t)=ε(t)−2ε(t−1)+ε(t−2)∞−st12−s1−2s∴F(s)=∫f(t)edt=−e+e0−sss(e)22Qf(t)=t[ε(t)−ε(t−T/2)]−(t−T)[(ε(t−T/2)−ε(t−T)]TTT−s2−Ts∞−st21−2e+e∴F(s)=f(t)edt=×∫0−Ts2(f)Qf(t)=sin(πt)[ε(t)−ε(t−1)]∞π−st−s∴F(s)=f(t)edt=(1−e)∫0−s2+π21
题5.3利用常用函数的象函数及拉普拉斯变换的性质,求下列信号的拉普拉斯变换。t−t(2)e[ε(t)−ε(t−2)](7)sin(2t−π/4)ε(t)(9)∫sin(πx)dx02d−(t−3)−αt(11)[sin(πt)ε(t)](15)teε(t−1)(16)tecos(βt)ε(t)2dt解:(2)11−2sQLT[ε(t)]=,∴LT[ε(t−2)]=ess−t1−2(s+1)∴LT{e[ε(t)−ε(t−2)]}=(1−e)s+1(7)1Qsin(2t−π/4)ε(t)=[sin(2t)−cos(2t)]ε(t)212s∴LT[sin(2t−π/4)ε(t)]=(−)222s+4s+4(9)πttQLT[sin(πt)ε(t)]=,sin(πx)dx=sin(πx)ε(x)dxs2+π2∫0∫−∞t1π∴LT[sin(πx)dx]=×∫0ss2+π2(11)πQLT[sin(πt)ε(t)]=22s+π22dsπ∴LT{[sin(πt)ε(t)]}=222dts+π(15)11−s−t1−(s+1)QLT[ε(t)]=,∴LT[ε(t−1)]=e,∴LT[eε(t−1)]=esss+1−(t−3)3d1−(s+1)s+2−(s−2)∴LT[teε(t−1)]=−e[e]=e2dss+1(s+1)(16)s−αts+αQLT[cos(βt)ε(t)]=∴LT[ecos(βt)ε(t)]=,2222s+β(s+α)+β22−αtds+α(s+α)−β∴LT[tecos(βt)ε(t)]=−[]=22222ds(s+α)+β[(s+α)+β]2
1题5.4如已知因果函数f(t)的象函数F(s)=,求下列函数的象函数。2s−s+1−tt−3t−2t(1)ef()(2)ef(2t−1)(3)tef(3t)(4)tf(2t−1)2解:(1)21/2LT[f(t/2)]==22(2s)−2s+1s−s/2+1/4−t1/2LT[ef(t/2)]=2(s+1)−(s+1)/2+1/4(2)1−s1/2−s/2LT[f(t−1)]=e,LT[f(2t−1)]=e22s−s+1(s/2)−s/2+1−3t1/2−(s+3)/2LT[ef(2t−1)]=e2((s+3)/2)−(s+3)/2+1(3)1−2t1LT[f(3t)]=,LT[ef(3t)]=22(s/3)−s/3+1((s+2)/3)−(s+2)/3+1−2td19(2s+1)LT[tef(3t)]=−=222ds((s+2)/3)−(s+2)/3+1[s+s+7](4)1/2−s/2LT[f(2t−1)]=e2(s/2)−s/2+1d1/2−s/2s(s+2)−s/2LT[tf(2t−1)]=−e=e222ds(s/2)−s/2+1(s−2s+4)题5.7求下列有始周期信号的象函数f(t)f(t)sin(βt)LLπ2π3π4πttββββ(b)(d)解:(b)∞Qf(t)=sin(βt)[ε(t)−ε(t−π/β)]∗∑δ(t−2nπ/β),n=03
π−sββ(1+e)LT{sin(βt)[ε(t)−ε(t−π/β)]}=,22s+β∞1LT[∑δ(t−2nπ/β)]=2π,−sn=0β1−e∞∴LT[f(t)]=LT{sin(βt)[ε(t)−ε(t−π/β)]}×LT[∑δ(t−2nπ/β)]n=0β1=22πs+β−sβ(1−e)(d)∞Qf(t)=[ε(t)−ε(t−T/2)]∗∑δ(t−nT)n=0T−1−e2s∞1LT[ε(t)−ε(t−T/2)]=,LT[∑δ(t−nT]=−Tssn=01−e∞1∴LT[f(t)]=LT[ε(t)−ε(t−T/2)]×LT[∑δ(t−nT)]=T−sn=0s(1+e2)题5.8求下列信号的拉普拉斯逆变换。21s+4s+52s+4(1)(3)(5)22(s+2)(s+4)s+3s+2s(s+4)解:(1)11/21/2Q=−,(s+2)(s+4)s+2s+4−11−11/21/21−2t−4t∴LT[]=LT[−]=(e−e)ε(t)(s+2)(s+4)s+2s+42(2)2s+4s+5s+321Q=1+=1+−22s+3s+2s+3s+2s+1s+22−1s+4s+5−t−2t∴LT[]=δ(t)+(2e−e)ε(t)2s+3s+2(3)2s+41s2−12s+4Q=−+,∴LT[]=(1−cos2t+sin2t)ε(t)2222s(s+4)ss+4s+4s(s+4)4
题5.9求下列象函数的拉普拉斯逆变换,粗略画出他们的波形图。−Ts−2(s+3)−s1−eeπ(1+e)(1)(3)(5)22s+1s+3s+π解:(1)−t1QLT[eε(t)]=,s+1−Ts−11−e−t−(t−T)∴f(t)=LT[]=eε(t)−eε(t−T)],画出波形图如下图(1)s+1(3)−2s−2(s+3)e−3teQLT[ε(t−2)]=,LT[eε(t−2)]=,ss+3−2(s+3)−1e−3t∴f(t)=LT[]=eε(t−2),画出波形图如下图(3)s+3(5)πQLT[sin(πt)ε(t)]=,22s+π−s−1π(1+e)∴f(t)=LT[]=sin(πt)ε(t)+sin(π(t−1))ε(t−1)22s+π=sin(πt)[ε(t)−ε(t−1)],画出波形图如下图(5)f(t)f(t)f(t)−6esin(πt)ttt(1)(3)(5)题5.15描述某LTI系统的微分方程为y′′(t)+3y′(t)+2y(t)=f′(t)+4f(t),求在下列条件下的系统的零输入响应和零状态响应。(1)f(t)=ε(t),y(0−)=0,y′(0−)=1解:(1)对原微分方程等式两边同时求单边拉普拉斯变换,令Y(s)=LT[y(t)],F(s)=LT[f(t)],结合单边拉普拉斯变换的时域微分性质有5
sy(0−)+y′(0−)+3y(0−)s+4Y(s)=+F(s),22s+3s+2s+3s+2sy(0−)+y′(0−)+3y(0−)111Y(s)===−,x22s+3s+2s+3s+2s+1s+2s+4s+41231Y(s)=F(s)=×=−+,f22s+3s+2s+3s+2sss+1s+2−1−t−2t∴y(t)=LT[Y(s)]=)[e−e]ε(t;xx−1−t−2t∴y(t)=LT[Y(s)]=)[2−3e+e]ε(tff题5.16描述某LTI系统的微分方程为y′′(t)+3y′(t)+2y(t)=f′(t)+4f(t),求在下列条件下的系统的零输入响应和零状态响应。−2t(2)f(t)=eε(t),y(0+)=1,y′(0+)=2解:(2)""−2t因为,零状态响应满足微分方程:y(t)+3y(t)+2y(t)=δ(t)+2eε(t),fff"所以,y(0+)=0,y(0+)=1;y(0−)=1,y′(0−)=1;ff对原微分方程等式两边同时求单边拉普拉斯变换,令Y(s)=LT[y(t)],F(s)=LT[f(t)],结合单边拉普拉斯变换的时域微分性质有sy(0−)+y′(0−)+3y(0−)s+4Y(s)=2+2F(s)s+3s+2s+3s+2sy(0−)+y′(0−)+3y(0−)s+432Y(s)===−,x22s+3s+2s+3s+2s+1s+2s+4s+41323Y(s)=F(s)=×=−−,f222s+3s+2s+3s+2s+2s+1(s+2)s+2−1−t−2t∴y(t)=LT[Y(s)]=)[3e−2e]ε(t;xx−1−t−2t∴y(t)=LT[Y(s)]=)[e−(2t+3)e]ε(tff题5.17求下列方程所描述系统的冲激响应h(t)和阶跃响应g(t)(1)y′′(t)+4y′(t)+3y(t)=f′(t)−3f(t)解:(1)对原微分方程等式两边同时求初始状态为零的单边拉普拉斯变换,令Y(s)=LT[y(t)],F(s)=LT[f(t)],ff6
Yf(s)s−3H(s)==,2F(s)s+4s+3s−31G(s)=LT[g(t)]=H(s)×LT[ε(t)]=×,2s+4s+3s−1−t−3th(t)=LT[H(s)]=[−2e+3e]ε(t),−1−t−3tg(t)=LT[G(s)]=[−1+2e−3e]ε(t)题5.18已知系统函数和初始状态如下,求系统的零输入响应y(t)xs+6(1)H(s)=,y(0−)=y′(0−)=12s+5s+6解:(1)Yf(s)s+6QH(s)==,2F(s)s+5s+62∴(s+5s+6)Y(s)=(s+6)F(s),等式两边求拉普拉斯逆变换得系统方程f为y′′(t)+5y′(t)+6y(t)=f′(t)+6f(t),则有y(t)满足微分方程:y′′(t)+5y′(t)+6y(t)=0,该式两边求拉普拉xxxx斯变换sy(0−)+y′(0−)+5y(0−)s+643得:Y(s)===−x22s+5s+6s+5s+6s+2s+3−1−2t−3t∴y(t)=LT[Y(s)]=)[4e−3e]ε(txx−2t题5.19已知LTI系统的阶跃响应g(t)=[1−e]ε(t),欲使系统的零状态响应为−2t−2ty(t)=[1−e+te]ε(t),求系统的输入信号f(t)。f−2t1121解:QG(s)=LT[g(t)]=LT[(1−e)ε(t)]=−==H(s)ss+2s(s+2)s2∴H(s)=,又s+2−2t−2tQY(s)=LT[y(t)]=LT[(1−e+te)ε(t)]ff111=−+=H(s)F(s)2ss+2(s+2)7
11/2−1−2t∴F(s)=+,∴f(t)=LT[F(s)]=(1+0.5e)ε(t)ss+2题5.22如图所示的复合系统,由4个子系统连接而成,各子系统的系统函数或11−2t冲激响应分别为:H(s)=,H(s)=,h(t)=ε(t),h(t)=eε(t),求1234s+1s+2复合系统的冲激响应h(t)。H(s)h(t)23f(t)y(t)H1(s)h4(t)∑解:QH(s)=LT[h(t)]=H(s)×[H(s)H(s)−H(s)]123411H(s)=LT[h(t)]=,H(s)=LT[h(t)]=3344ss+211111−s1/223/2∴H(s)=×(×−)==−+,s+1s+2ss+2s(s+1)(s+2)ss+1s+2−11−t3−2t∴h(t)=LT[H(s)]=(−2e+e)ε(t)22题5.28某LTI系统,在以下各种情况下初始状态相同。已知:当激励f(t)=δ(t)1−t−t时,其全响应y(t)=δ(t)+eε(t);当激励f(t)=ε(t)时,其全响应y(t)=3eε(t)。122−2t(1)如f(t)=eε(t),求系统的全响应y(t);33(2)如f(t)=t[ε(t)−ε(t−1)],求系统的全响应y(t)。44解:设系统的系统函数为H(s),系统零输入响应的象函数为Y(s),x1则:Y(s)=Y(s)+H(s)F(s)=Y(s)+H(s)=1+,1x1xs+113Y(s)=Y(s)+H(s)F(s)=Y(s)+H(s)=,2x2xss+112解得:H(s)=1−,Y(s)=;xs+1s+1(1)1QF(s)=LT[f(t)]=33s+212∴Y(s)=LT[y(t)]=Y(s)+H(s)F(s)=+,33x3s+1s+28
−1−t−2t∴y(t)=LT[Y(s)]=(e+2e)ε(t)33(2)−s−sse+e−1QF(s)=LT[f(t)]=−442s−s−s−s2sse+e−111e∴Y(s)=LT[y(t)]=Y(s)+H(s)F(s)=−=+−,44x42s+1s+1sss+11−1−t∴y(t)=LT[Y(s)]=(1+e)ε(t)−ε(t−1)449'
您可能关注的文档
- 会计基础实务(第二版)课后练习题答案.doc
- 会计基础课后习题答案及解析.doc
- 会计学习题及答案.doc
- 会计学答案.doc
- 会计理论章后习题参考答案(修订)_.doc
- 传播学教程第二版_课后习题答案.docx
- 体育概论复习题及答案.doc
- 保护生物学期末复习题及答案.doc
- 保险学习题(无答案)全部.doc
- 信息安全数学基础习题答案.pdf
- 信息安全概论习题答案.doc
- 信息安全课后习题2答案(段云所版).doc
- 信息检索习题以及答案.doc
- 信息检索习题及答案.doc
- 信息检索课后答案.doc
- 信托与租赁习题及答案.doc
- 修改附录 审计基础与实务 练习题参考答案.doc
- 先秦秦汉史题库答案(西南大学08级历史).doc