• 243.88 KB
  • 47页

优秀毕业设计毕业论文110KV变电站设计

  • 47页
  • 关注公众号即可免费下载文档
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档由网友投稿或网络整理,如有侵权请及时联系我们处理。
'华北电力大学毕业设计(论文)题目110KV变电站电气主接线设计专业电气工程及其自动化班级学生姓名指导教师 2012年09月10H摘要本次设计为llOkV降压变电站电气一次部分的初步设计,根据原始资料,以设计任务书和国家有关电力工程设计的规程、规范及规定为设计依据。变电站的设计在满足国家设计标准的基础上,尽量考虑当地的实际情况。在本变电站的设计屮,包括对变电站总体分析和负荷分析、变电站主变压器的选择、电气主接线、电气设备选择、短路电流计算等部分的分析计算以及防雷设计。在保证供电可靠性的前提下,减少事故的发生,降低运行费用。本次设计正文分设计说明书和设计计算书两个部分,设计说明书包括电气主接线设计、变压器选择说明、短路电流计算说明、电气设备选择说明、配电装置设计、电气总平面布置和防雷保护设计;设计计算书包括变压器选择、短路电流计算、电气设备选择及校验等,并附有电气主接线图及其它相关图纸。关键词:110kV变电站;短路电流;一次部分;设备选择 目录摘要第一部分设计说明书1原始资料11.1变电站的基本情况11.2设计任务22变压器选择32.1变压器绕组与调压方式的选择32.2变压器相数的选择32.3变压器容量和台数的选择32.4变压器的冷却方式43电气主接线设计53.1主接线的设计原则53.2主接线设计的基木要求63.3主接线方案的比较和确定74短路电流计算114.1短路电流计算的冃的114.2短路电流计算的规定114.3短路电流计算的步骤124.4短路类型及其计算方法125高压电器选择145.1高压断路器的选择145.2隔离开关的选择145.3各级电压母线的选择155.4电流互感器的选择155.5电压互感器的选择16 5.6避雷器的选择16186配电装置设计6」配电装置的基本要求186.2配电装置的种类及应用187防雷保护设计197.1防雷保护的特点197.2变电站直击雷防护197.3进线保护19第二部分计算书8变压器容量计算及选择20&1本站负荷计算208.2变压器容量及型号的选择209短路电流计算219」原始资料219.2短路计算2110高压电器的选择与校验2710.1最大持续工作电流计算2710.2断路器的选择及校验2710.3隔离开关的选择及校验3010.4电流互感器的选择及校验3110.5限流电抗器的选择及校验3510.6电压互感器的选择及校验3510.7导体的选择及校验3710.8绝缘子及穿墙套管的选择39总结40参考资料41致谢42 第一部分设计说明书1原始资料1.1变电站的基本情况1.1.1变电站建设性质及规模木站位于蒙城边缘,供给城市和近郊工业、农业及生活用电,系新建变电站。电压等级:110/10kV线路冋数:HOkV:2冋,备用2冋10kV:13回,备用2回1.1.2电力系统接线简图如2图1.1电力系统接线简图1.1.3变电站规模和电力系统情况(1)变电站性质:HOkV变电站。(2)llOkV最终两回进线川回出线。每回岀线输送容量为15MVA,本期工程2冋进线,2回出线。(3)10kV出线最终15回,本期13回,备用2回,Tmax=5500小时,负荷同吋率0.85,备用总负荷4MW,COS0=0.85。(4)根据当地电力系统的远景规划,llOkV和10kV负荷的具体参数如下表: 表1.1llOkV和10kV负荷具体参数表电压等级负荷名称最大穿越功率(MW)最大负荷(MW)负荷组成(%)COS①TmaX(h)线长(km)同时率线损近期远景近期远景级级三级11OkVBZ线1015BI线1015备用(-)10备用(二)1010kV市区一2330500.8185%5%市区二2330500.82.5食犷11.520400.840001.75W■11.520400.7840001.8木慟厂一2330400.7555001瞒厂二卬新一34.535400.7855002印染二柴油的LT23.530400.855002.5柴油矿水沁"1.5225300.835002.5机修厂1.5220300.7530002交骨1.5215300.81.5备用…23备用二231.2设计任务(1)变电站电气主接线的设计(2)主变压器的选择(3)短路电流的计算(4)电气设备的选择(5)配电装置及电气总平面设计(6)防雷保护设计 2变压器选择2.1变压器绕组与调压方式的选择(1)绕组连接方式参考《电力工程电气设计手册》和相应规程指出:变压器绕组的连接方式必须和系统电压一致,否则不能并列运行。电力系统中变压器绕组采用的连接方式有丫和厶型两种,而且为保证消除三次谐波的影响,必须有一个绕组是△型的,我国llOkV及以上的电压等级均为大电流接地系统,为取得中性点,所以都需要选择以的连接方式,ifu6-10kV侧采用△型的连接方式。故该llOkV变电站主变应釆用的绕组连接方式为:Yn,Ao(2)调压方式的确定变压器的电压调整是用分解开关切换变压器的分接头,从而改变变压器比来实现的。切换方式有两种:不带电切换,称为无励磁调压,调压范围通常在±5%以内,另一种是带负荷切换,称为有载调压,调压范围可达到±30%。对于llOkV及以下的变压器,以考虑至少冇一级电压的变压器釆用冇载调压。由以上知,此变电所的主变压器釆用有载调压方式。2.2变压器相数的选择主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因索。当不受运输条件限制时,在330kV及以下的发电厂和变电所,均应采用三相变压器。社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。2.3变压器容量和台数的选择主变容量一般按变电站建成近期负荷5〜10年规划选择,并适当考虑远期10〜15年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,从长远利益考虑,木站应按近期和远期总负荷來选择主变的容量,根据变电所带负荷的性质和电网结构来确定主变压器的容量,对于有重要负荷的变电所,应考虑当一台变压器停运吋,其余变压器容量在过负荷能力允许吋间内,应保证用户的一级和二级负荷。所以每台变压器的额定容量按Sn=0JPm,其中化为变电所最大负荷选择,即S广0.7X38.77=27」4小44这样当一台变压器停用时,也保证70%负荷的供电。由于一般电网变电所大约有25%的非重要负荷,因此采用式Sn=0JPm来计算主变容量对变电所保证重耍负荷来说是可行的。通过计算本变电站可选择额定容量为31.5MVA的主变压器。为了保证供电可靠性,避免一台主变压器故障或检修时影响供电,变电站一般 装设两台主变压器。当装设三台及三台以上时,变电所的可靠性虽然有所提高,但接线网络较复杂,且投资增大,同时也增加了配电设备及用电保护的复杂性,以及带来维护和倒闸操作的复朵化。考虑到两台主变同时发生故障机率较小,且适用远期负荷的增长以及扩建,故木变电站选择两台主变压器完全满足要求。2.4变压器的冷却方式根据变压器型号的不同,其冷却方式有:自然风冷、强迫油循环风冷、强迫油循环水冷、强迫导向油循环等。油浸自冷式就是以油的自然对流作用将热量带到油箱壁和散热管,然后依靠空气的对流传导将热量散发,它没有特制的冷却设备。而油浸风冷式是在油浸自冷式的基础上,在油箱壁或散热管上加装风扇,利用吹风机帮助冷却。加装风冷后可使变压器的容量增加30%〜35%。强迫油循环冷却方式,乂分强油风冷和强油水冷两种。它是把变压器屮的油,利用油泵打入油冷却器后再复回油箱。油冷却器做成容易散热的特殊形状,利用风扇吹风或循环水作冷却介质,把热量带走。这种方式若把油的循环速度比自然对流时提高3倍,贝9变压器可增加容量30%o综上所述,110kV变电站冷却方式宜采用强迫油循环风冷。 3电气主接线设计屯气主接线设计的基本原则是以设计任务书为依据,以国家的经济建设方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下、兼顾运行、维护方便,尽可能的节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要求用规定的设备文字和图形符号,并按工作顺序排列,详细地农示电气设备或成套装置全部基木组成和连接关系,代农该变屯站电气部分的主体结构,是电力系统结构网络的重要组成部分。3.1主接线的设计原则(1)考虑变电所在电力系统中的地位和作用变电所在电力系统中的地位和作用是决定主接线的主要因素。不论是枢纽变电所、地区变电所、终端变电所、企业变电所还是分支变电所,由于在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。(2)考虑近期和远期的发展规模变电所主接线设计应根据5〜10年电力系统发展规划进行。应根据负荷的大小和分布、负荷增长速度以及地区网络情况和潮流分布,并分析各种可能的运行方式来确定主接线的形式以及所连接的电源数和出线回数。(3)考虑负荷的重要性和分级和出线回数多少对主接线的影响对一级负荷,必须有两个独立电源供电,口当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般耍有两个电源供电,且当一个电源失去后,能保证大部分二级负荷供电。三级负荷一般只需一个电源供电。(4)考虑主变台数对主接线的影响变电所主变的容量和台数,对变电所主接线的选择将产生直接的影响。通常对大型变电所,由于其传输容量大,对供电可靠性要求高,因此对主接线的可靠性、灵活性的要求也比较高。而容量小的变电所,其传输容量小,对主接线的可靠性、灵活性要求低。(5)考虑备用容量的有无和大小对主接线的影响发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况卜的应急要求。电器主接线的设计要根据备用容量的有无而有所不同。例如, 当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时允许切除线路、变压器的数量等,都直接影响主接线的形式。3.2主接线设计的基本要求主接线设计的合理性直接影响电力系统运行的可靠性,灵活性及对电器的选择、配电装置、继电保护、自动控制装置和控制方式的拟定都有决定性的关系。根据《电力工程电气设计手册(电气一次部分)》中有关规定:“变电所的电气主接线应根据该变电所在电力系统中的地位,变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。并综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求主接线设计的基本要求如下:3.2.1可靠性所谓可靠性是指主接线能可靠的运行工作,以保证对用户不间断供电。衡量可靠性的客观标准是运行实践,经过长期运行实践的考验,对以往所采用的主接线,优先采用。主接线的可靠性是它的各组成元件,包括一、二次设备部分在运行屮可靠性的综合。同时,可靠性不是绝对的而是和对的。可能一种主接线对某些变电所是可靠的,而对另一些变电所可能就不是可靠的。评价主接线方式可靠的标志是:(1)线路、母线(包括母线侧隔离刀闸)等故障或检修吋,停电范围的大小和停电时间的长短,能否保证对一类、二类负荷的供电。(2)线路、断路器、母线故障和检修吋,停运线路的冋数和停运吋间的长短,以及能否保证对重要用户的供电。(3)变电所全部停电的可能性。(4)大型机组突然停电,对电力系统稳定运行的影响与后果。3.2.2灵活性电气主接线应能适应各种运行状态,并能灵活地进行运行方式的转换,灵活性主耍包括以下几个方面:(1)操作的方便性:电气主接线应该在满足可靠性的条件下,接线简单,操作方便,尽可能地使操作步骤少,以便于运行人员掌握,不致在操作过程中出差错。(2)调度的方便性:电气主接线在正常运行时,要能根据调度要求,方便地改变运行方式,并II在发生事故时,要能尽快地切除故障,使停电时间最短,影响范围最小,不致过多地影响对用户的供电和破坏系统的稳定运行。 (1)扩建的方便性:对将来要扩建的发电厂,其接线必须具有扩建的方便性。尤其是火电厂,在设计主接线时应留有发展扩建的余地。设计时不仅要考虑最终接线的实现,还要考虑到从初期接线到最终接线的可能和分段施工的可行方案,使其尽可能地不影响连续供电或在停电时间最短的情况下,将来能顺利完成过渡方案的实丿施,使改造工作量最少。3.2.3经济性主接线的经济性和可靠性之间经常存在矛盾,所以应在满足可靠性和灵活性的前提下做到经济合理。经济性主要从以下儿个方面考虑:(1)节省一次投资。主接线应简单清晰,并要适当采取限制短路电流的措施,以节省开关电器数量、选用价廉的电器或轻型电器,以便降低投资。(2)占地而积少。主接线设计要为配电装置布置创造节约土地的条件,尽可能使占地面积少;同时应注意节约搬迁费用、安装费用和外汇费用。对大容量发电厂或变电站,在可能和允许条件卜•,应采取一次设计,分期投资、投建,尽快发挥经济效lift.O(3)电能损耗少。在发电厂或变电站屮,电能损耗主要来自变压器,应经济合理地选择变压器的形式、容量和台数,尽量避免两次变压而增加电能损耗。3.3主接线方案的比较和确定根据《电力工程电气设计手册(电气一次部分)》的相关要求,llOkV配电装置出线冋路数4冋时,可采用单母线分段的接线、双母线接线、单母线分段带旁路接线,10kV配电装置出线冋路数10冋及以上时•,可采用单母线分段的接线和双母线接线,在采用单母线分段或双母线的35〜110kV主接线屮,当不允许停电检修断路器时,可设置旁路设施。当有旁路母线时,首先宜采用分段断路兼作旁路断路器的接线。当HOkV线路6冋及以上,35〜6kV线路8冋及以上时,可以装设专用的旁路断路器。3.3.1llOkV侧主接线设计(1)初选方案因本所初期设计2回进线2回出线,最终2回进线4回出线,故110kV变电站电气主接线可采用单母线分段接线或单母线分段带旁路接线。下面以这两个方案进行分析比较,确定其主接线的具休形式。单母线分段接线如图2.1所示: [灯线备用二BZ线备用一Q1吃QFdQ1图3.1单母线分段接线单母线分段带旁路接线图如图3.2所示:BZ线务用一金八BI线备用二QS77QS6•WP7QS3QS4/QF1QFD八QS5WI——1——L△qSIQS2WII图3.2单母线分段分段断路兼作旁路断路器的接线 (1)方案比较单母线分段接线:①当一段母线发生故障,分段断路器口动将故障段隔离,保证止常母线不间断供电,不致使重耍用户停电。②两段母线同时发生故障的机率甚小,可以不予考虑。③在可靠性要求不高时,可使用隔离分段开关。任一段母线故障时,将造成两段母线同时停电,在判断故障后,断开分段隔离开关,完好段即可恢复供电。单母线分段带旁路接线:①通过倒闸操作,可检修与旁路母线相连的任一回路的出线断路器而不停电,因同定式断路器检修时间较长,不重耍负荷停电时间长。②任一出线断路器故障时,通过倒闸操作,可在较短时间内恢复对该线路的供电。进线断路器故障时,不重要负荷停电时间较长。检修母线时,非检修段可以照常供电,并可对双回路线路通过其一回给I、II类负荷供电,还可通过倒闸操作经旁路母线对检修段出线负荷最重要的一个用户继续供电。③几乎无线路全部停运的可能,若出线全部停运的情况,因固定式断路器的检修时间长,则全部停运时间长。④正常运行时,QFd作为分段断路器工作,一段母线故障,QFd跳开,不会影响止常段母线供电。检修出线断路器,可以通过倒闸操作而不是切除线路。运行方式改变时,倒闸操作繁琐,不够灵活。⑤设备少,投资少,土建工作和费用较少,可以两个方向均衡扩建。(2)方案确定从技术性角度而言,两种方案均能满足llOkV级供电可靠性和灵活性的耍求,且具有扩建方便的优点,但由于断路器经过长期运行和切断次数都需要检修,为了使检修时不至于中断回路供电,故采用分段断路器兼作旁路断路器的接线方式。综合比较,本次设计在llOkV母线上釆用单母线分段带旁路母线接线的形式。3.3.110kV侧主接线设计(1)初选方案10kV侧出线冋路数本期为13冋,最终15冋,根据规程要求和本所实际情况,10kV电气主接线可以采用单母线分段接线或双母线接线。(2)方案比较双母线接线特点: ①检修任一组母线,不会屮断对用户的连续供电(利用母联倒换操作)。②一组母线故障后,该母线上的所有进出线都要停电,但能迅速恢复供电。③检修任一回路中的母线侧QS,仅该回路停电,其余线路照常工作。④任一回路屮的QF,如拒动或因故不能操作时,可用母联代替操作。⑤在特殊需要时,可以用母联与系统进行同期或解列操作@QS不仅用來隔离电压,而且还用來倒换操作⑦扩建方便。(3)方案确定:10kV侧采用单母线分段接线,供电距离短,且对重要负荷采用双回路供电。接线简单清晰,操作方便,不易误操作,设备少,投资小,占地面积小,为以后的发展和扩建奠定了基础。故采用单母线分段接线的接线方式基于上述理由,再考虑到该变电站在电力系统中的地位、建设规模、负荷性质等情况,在保证供电可靠性的前捉下,运行灵活性、操作检修方便,节约投资,确定:HOkV接线采用单母线分段带旁路母线的接线,10kV接线采用单母线分段接线。 4短路电流计算在电力供电系统中,对电力系统危害最大的就是短路。短路的形式可以分为三相短路、两相短路、两相短路接地、单相短路接地。在短路电流计算过程屮,以便都以最严重的短路形式为依据。因此,本文的短路屯流计算都以三相短路为例。在供电系统中发生短路故障吋,在短路回路中短路屯流要比额定屯流人几倍至几I•倍,通常可达数千安,短路电流通过电气设备和导线必然要产生很大的电动力,并且使设备温度急剧上升冇口J能损坏设备和屯缆;在短路点附近电压显著下降,造成这些地方供电中断或影响屯动机正常工作;发生接地短路吋所出现的不对称短路屯流,将对通信线路产生干扰;当短路点离发电厂很近吋,将造成发电机失去同步,而使整个电力系统的运行解列。4.1短路电流计算的目的计算短路电流的H的是为了止确选择和校验电器设备,避免在短路电流作用下损坏电气设备,如杲短路电流太大,必须采用限流措施,以及进行继电保护装置的整定计算。为了达到上述目的,须计算出下列各短路参数r-次暂态短路电流,用来作为继电保护的整定计算和校验断路器额定断流容量。应采用(电力系统在最大运行方式卜J继电保护安装处发生短路时的次暂态短路电流來计算保护装置的整定值。isk—三相短路冲击电流,用来检验电器和母线的动稳定。/—三相短路电流有效值,用来检验电器和母线的热稳定。S〃一次暂态三相短路容量,用来检验断路器的遮断容量和判断母线短路容量是否超过规定值,作为选择限流电抗器的依据。4.2短路电流计算的规定为了简化短路电流的计算方法,在保证计算精度的情况下,忽略次要因素的影响,做出以下规定:(1)所冇的电源电动势相位角均相等,电流的频率相同,短路前,电力系统的电势和电流是对称的。(2)认为变压器是理想变压器,变压器的铁心始终处于不饱和状态,即电抗值不随电流的变化而变化。(3)输电线路的分布电容略去不计。(1)每一个电压级釆用平均电压,这个规定在计算短路电流时,所造成的误差很小。唯-•例外的是电抗器,应该釆用加于电抗器端点的实际额定电压,因为电抗器 的阻抗通常比其他元件阻抗大的多,否则,谋差偏大。(1)计算高压系统短路电流时,一般只计及发电机、变压器、电抗器、线路等元件的电抗,因为这些元件X/3>R时,可以略去电阻的影响。只有在短路点总电阻大于总电阻的1/3时才加以考虑,此时采用阻抗等于电抗计算。(2)短路点离同步调相机和同步电动机较近时,应该考虑对短路电流值的影响。有关感应电动机对电力系统三相短路冲击电流的影响:在母线附近的大容量电动机正在运行时,在母线上发生三相短路,短路点的电压立即降低。此时,电动机将变为发电机运行状态,母线上电压低于电动机的反电势。(3)在简化系统阻抗时,距短路点远的电源与近的电源不能合并。(4)以供电电源为基准的电抗标幺值>3,可以认为电源容量为无限大容量的系统,短路电流的周期分量在短路全过程屮保持不变。4.3短路电流计算的步骤在工程设计屮,短路电流的计算通常采用实用计算曲线法。其具休计算步骤如下:(1)计算各元件电抗标幺值,并折算到同一基准容量下;(2)绘制等值网络,进行网络变换;(3)选择短路点;(4)对网络进行化简,把供电系统看为无限大系统,不考虑短路电流周期分量的衰减求出电流对短路点的电抗标幺值,并计算短路电流标幺值、有名值;(5)计算短路容量,短路电流冲击值:短路容量:s=vjr(4.1)短路电流冲击值:Icj=2.55/"(4.2)(6)列出短路电流计算结果。具体短路电流计算详见计算说明书。4.4短路类型及其计算方法电力系统中可能发生的儿种形式的短路类型及其计算方法是如下:(1)三相短路电流的计算:⑶=-^―(4.3)xiy* 其有名值为:(4.4)严一系统中发生三和短路时,短路点的短路电流标幺值匚⑶一系统中发生三相短路时,短路点的短路屯流有名值归算到短路点的综合正序等值电抗。以下为简便起见,省略下标*o(2)两相短路电流的计算:X辽一归算到短路点的负序综合电抗//2)—两相短路时短路点的全电流其各序分量电流值为:5⑵,4⑵一分别为两相短路时,短路点短路屯流的正负序分量(3)两相接地短路屯流计算:/1J)—M相短路接地时,短路点故障相全电流刃3—两相短路接地吋,短路点的正序电流分量/("•")=1X乞+X乞//X吻xoV(1.1)_J(IJ)y吩"2-Jdl%~T;—(1.1)_f(1,1)、,2L“0-£dlK7TTAoX+A2X,10kV低圧侧母线山,系统等值网络图如图9.1。 lKJkV③.0图9.2系统网络接线简图9.2.2各短路点电流短路电流计算(1)山点短路时,Up=115kV,等值网络如图9.3。E-1.020.()48图9.3山点短路等值网络图等值网络电抗的标幺值:=[(0.0244-0.06+0.28)//(0.012+0.053)+0.012]//0.056=0.048次暂态短路电流标么值: 次暂态Os和4s吋的短路电流相等,三相短路电流有名值为:=10.46肋I:SB_20.83x100^a~V3xll5冲击电流为:厶力二二71x1.9x10.46=28.10肋kim——冲击系数,取1.9。短路全电流最大有效值为:Ioh=1.51^=1.51x10.46=15.79肋短路容量为:S==1-732xll5xl0.4=2071.47MVA(2)ch点短路时,Up二10.5kV,等值网络如图9.4o0.069ICkVLT"0.53图9.4d?点短路等值网络图等值网络电抗的标幺值:=(0.056+0.012)7/(0.024+0.06+0.28)+0.012+0.53=0.599次暂态短路电流标么值的计算:1.00.599=1.67次暂态Os和4s时的短路电流相等,三相短路电流有名值为:1.67x10073x10.5=9.18M冲击电流为:Zr/I=V2Zl,n=V2x1.8x9.18=23.36M 短路金电流最大有效值为:l()h=1.51/O"=1.51x9.18=l3.86M短路容量为:S=®Br=1.732xl0.5x9.18=l66.95MVA(3)ch点短路时,Up二llOkV,等值网络如图9.5。图9.5d3点短路等值网络图等值网络电抗的标幺值:X=[(0.056+0.012)//(0.012+0.053)+0.024+0.06]//0.028=0.083次暂态短路屯流标么值:=-3*1.00.083=12.05次暂态Os和4s时的短路电流相等,三和短路电流有名值为:12.05x100V3xll5=6.05M冲击电流为:ich=近版“=72x1.8x34.37=15AOkA短路全屯流最人有效值为:/?/i=1.51/o"=1.51x6.O5.=9.13M短路容量为:S=V3t/J"=1.732xll5x6.05=1205.04MVA (1)d4点短路时,Up二115kV,等值网络如图96E-l.00.()30图9.6£点短路等值网络图等值网络电抗的标幺值:X*=[(0.056+0.012)//(0.024+0.006+0.28)+0.012]//0.053=0.030次暂态短路屯流标么值:1.0-0.030=33.33次暂态Os和4s时的短路电流相等,三和短路电流有名值为:冲击电流为:几=应/徹湖=7^x1.8x16.73=42.59肋短路全电流最大有效值为:短路容量为:I()h=1.51/0"=1.51xl6.73=25.26肋S=y/3UBr=1.732x115x16.73=3332.28ME4 923短路电流计算结果表表9.2短路电流计算结果短路点编号基值电压Ub(kv)基值电流iB(kA)短路电流标幺值(kA)短路电流有名值(kA)短路电流冲击值・(kA)电流最人有效值I〃(kA)£1155.49855.9610.4628.1015.7910.50.5021.679」823.3613.861155.49812.056.0515.409.131155.4984」122.6057.5334.31 10高压电气设备的选择与校验10.1最大持续工作电流计算10.1.1110kV侧电网额定电压U,s=}}OkV进线最大持续工作电流1°[315OO“736oa73x110/1.05P_1.05S实际工程设计中需耍考虑规划远景母线穿越功率的因素,而根据《国家电网工程典型设计》llOkV穿越功率一般设定为2倍变压器容量,则严=1.05二2x31500,472臥73x110比较上述结果,考虑到在屯器设备选择中,同一屯压等级同类电器的型号不宜过多,可以选取其屮最大值作为该侧各冋路的最大持续工作电流值,即:1(1io)=347・21A。10.1.210kV侧5s=l°kV电网额泄电压由于10kV侧加上了电抗器,工作电流按电抗器额定电流确定,则进线最大持续工作电流为gmax=1电抗器N-300041.05x3000出线最大持续工作电流应按本侧最大负荷进行考虑和选择m.ix=—=亠厂=215.21A&®碍cosy/馆x10x0.85即:I(io)=3OOO4o10.2断路器的选择及校验10.2.1llOkV侧断路器(1)额定电压的选择UN>UNS=\OkVUN——电气设备额定屯压,Uns——屯网额定工作电压,电气设备最高工作电压Umax^Ug=1.15UN(Ug为电网最高额定工作电压)。 (2)额定电流的选择N一maxIN一一电气设备额定电流,【max——电器所在回路在各种合理运行方式下的最大持续工作电流,则【N—^max(HO)=347.21A(3)开断电流选择INbr>In=29.23kA根据Un、gx、【Nb「以及安装条件,查设备手册,可选LW6-110/1500SF6断路器。(4)根据热稳定要求H>Qk对选定断路器进行热稳定校验:冷=322x3=3072取继电保护后备保护动作时间为最不利时间tpr=3・9s〔9],tin=0.03s,ta=0.04s,计算时间为tk=tpr+tin+ta=3.9+0.03+0.04=3.97s>ls所以可忽略非周期分量热效应,只需取周期分量热效应,即Qk=Qp。Qp/驚+10£+/:xtL=12k(10.42+10x10.42+10.42)12x4.0=432.64(M)25(5)动稳定校验ics>ish=10.4^A校验计算结果与所选断路器列表比较见表10.1表10.1校验计算结果与所选断路器参数比较表计算结果LW6-110/15005(kV)110U/kV)110I』A)347.215(A)1500I"(kA)10.4%(kA)31.5QJkA)2s432.641/t(kA)2s4800(kA)29.23Bs(kA)80 10.2.3lOkV侧断路器(1)额定电压的选择(2)额定电流的选择(3)开断电流选择INhr>In=29.23M根据Un、Imax、【Nbr以及安装条件,查设备手册,可选ZN5-10/1000真空断路器。(4)根据热稳定耍求H>Qk对选定断路器进行热稳定校验:7;/=322x3=3072(M)25取继电保护后备保护动作时间为最不利时间tp「=3.9s,tin=0.04s,ta=0.06s,计算时间为tk=tpr+tin+ta=3.9+0.04+0.06=4.0s>Is所以可忽略非周期分量热效应,只需取周期分量热效应,即Qk=Qp。Qp=弔2+10/+*X乙=12"(12.782+10x12.782+12.782)12x4.0=653.32(M几(5)动稳定校验ies上加29.23M校验计算结果与所选断路器列表比较见表10.2。表10.2校验计算结果与所选断路器参数比较表计算结果ZN-12/3150-40U^(kV)10U^(kV)10Imax(A)3000g(A)3150I"(kA)29.23[Nbr広①40QJkA)2s653.32Iz2t(kA)2s4800ich(kA)28.7ies(kA)100 10.3隔离开关的选择及校验10.3.1110kV侧隔离开关(1)额定电压的选择UN>UNS=\OkV(2)额立电流的选择A/max=347.2UV(3)极限通过电流选择zcs>zr,=15.79M根据Un、Imax>ics以及安装条件,查设备手册,可选GW4-110D/1000-80户外型高压隔离开关。(4)根据热稳立要求HnQk对选定隔离开关进行热稳定校验:/^=31.52x4=3969(fc4)25取继电保护后备保护动作时间为最不利时间tp「=3.9s,tin=0.04s,t尸0.06s,计算时间为tk=tpr+tin+ta=3・9+0.04+0.06=4.0s>Is所以可忽略非周期分量热效应,只需取周期分量热效应,即QK=Qpo/腐+10/;+/2¥"(10.42+10x10.42+10.42),”“―八八2Qp12—屯xt.=x4=432.64(kAYs12校验计算结果与所选隔离开关列表比较见表10.3。表10.3校验计算结果与所选隔离开关列表比较表计算结果GW4-110D/10000-805(kV)110Un(kV)110•(A)347.21g(A)1000Q,(kA)2s432.64l/t(kA)2s3969b(kA)15.70b(kA)80 10.3.210kV侧隔离开关(1)额定电压的选择UN>UNS=WkV(2)额定电流的选择InA^maxdO)=30004(3)极限通过电流选择b»■严28.70M根据Un、Imax>ies以及安装条件,査设备手册,GN10-10T/3000户内型高压隔离开关。(4)根据热稳定耍求l;t>Qk对选定隔离开关进行热稳定校验:/z2r=402x3=4800(M)25取继电保护后备保护动作时间为最不利时间tp「=3・9s,tin=0.04s,ta=0.06s,计算时间为tk=tpr+tin+ta=3.9+0.04+0.06=4.0s>Is所以可忽略非周期分量热效应,只需取周期分量热效应,即Qk=QPo严+10/2*]2Qp12°丄上X*=(12卅+心12卅+12.782)x40=653,32(kA几12k校验计算结果与所选隔离开关列表比较见表10.4。表10.4校验计算结果与所选隔离开关列表比较表计算结果GN10-10T/30005$(kV)10Un(kV)10Imax(A)30005(A)3000Q,(kA)2s653.32Ir2t(kA)2s4800ich(kA)19.3ies(kA)160由以上可知,所选隔离开关校验全部合格。10.4电流互感器的选择及校验10.4.1110kV侧TA(1)一次回路额定屯压的选择:“N—U代 UN——电流互感器一次lul路额定电压,即:uNnii(w(2)一次回路额定电流的选择1N—"maxIn——电流互感器一次回路额定电流,Imax理电流互感器所在回路在齐种合运行方式下的最人持续工作电流,则因为进线持续工作电流为:_1.05P_1.05S_1.05x31500_z=矶计=V3t77=V3xllO=所以:In>173.60A(3)二次冋路额定电流选择弱电系统的1A。(4)准确级选择根据所供测量的仪表的准确级,确定屯流互感器的准确级如下:①110kV主变高压侧所属电流互感器的准确级选择为:10P30/10P30/0.5/0.5②110kV出线所属电流互感器的准确级选择为:10P30/10P30/0.5/0.5根据Un、Imax以及安装条件,查设备手册,可选LCWD-110型号电流互感器。主要技术参数见表10.5o额定电设备最额定额定一额定二3s热稳级次纟R动稳定型号咼电压电流次电流次电流定电流电流峰压(kV)合(kV)比(A)(A)n(kA)值(kA)表10.5LCWD-110电流互感器主要技术参数LCWD-2X1OP3O/1OP3O/150110126600/1120010.5/0.5301102X1OP3O/1OP3O/1101261200130150600/10.5/0.5(Kg仁Qk(5)根据热稳定要求对选定电流互感器进行热稳定校验:由参数表知:Kt=30,Kes=150,则: (K/n】)2=(30x1.2)2=1296(^)2sQk=In2t=10.42x3=324.48(kA)2s<(KtIN})2(1)根据动稳定要求血xINlXKeslch校验:V2/,vl^s.=72x1.2x150=254.52^=9.91^因此,所选择的电流互感器能满足校验要求。10.4.110kV侧TA(1)主变进线TA①一次回路额圧电压的选择UN=1(W②一次冋路额定电流的选择"N—"max因为10kV主变进线最大持续工作电流为/gmax"电抗器N=3000A所以*230004③二次回路额定电流选择弱电系统的1A。④准确级选择根据保护需要确肚电流互感器的准确级如下:10P20/10P20/0.5/0.2根据UN>Lax以及安装条件,查设备手册,可选LZZBJ8-10A户内型支柱式环氧树脂浇注绝缘电流互感器。主要技术参数见表10.6。表10.6LZZBJ8-10A电流互感器主要技术参数额定设备最额定额定一额定二3s热稳动稳定型号电压高电比流次电流次电流级次组合定电流电流峰(kV)(kV)ffi比(A)(A)(kA)值(kA)10P20/10LZZBJ8-10A10123000/130001P20/0.5/0100250.2⑤根据热稳疋要求(Kg仁Qk 对选定电流互感器进行热稳定校验: 由参数表知:Kt二100,Kes=250o(K」n$=(100x3)2=90000(M)25Qk=In2t=12.782X3=489.98(M)2^<(KtINl)2①根据动稳定要求血xgXKes2山校验:42IN]Kes=V2x3x250=1060.66(/^4)>Ich=49.39(/C4)因此,所选择的电流互感器能满足校验要求。(2)10kV出线TA①一次回路额定电压的选择UN=10ZrV②一次凹路额定电流的选择max1心因为10kV侧出线最大持续工作电流gmax1.05匕-7=L—=347.21/1Q3UMcos©所g>289.25A③二次冋路额定电流选择弱电系统的1A。④准确级选择根据保护需要选择木10kV侧准确级,确定电流互感器的准确级如210P20/0.5/0.2/0.2根据Un、gax以及安装条件,查设备手册,可选LZZBJ9-10Q型号电流互感器。主要技术参数见表10.7o表10.7LZZBJ9-10Q电流互感器主要技术参数额定设备最额定额定一额定二3s热稳动稳定型号电压高电压电流次电流次电流级次组合定电流电流峰(kV)(kV)比(A)(A)(kA)值(kA)10P20/0.5/01.280200800/LZZBJ9-10Q10128001因此,所选择的电流互感器能满足校验要求。 10.5限流电抗器的选择及校验因为10kV母线上的短路电流过大,所以要加装限流电抗器,起限流作用,按下列条件选择:(1)额圧电压的选择UN>U,s=OkV(2)额定电流的选择【NAzmax(io)=3000A根据U&、/唤以及安装条件,查设备手册,可选XKDGKL-10/3000-5单相干式空心铝线型限流电抗器。根据热稳泄要求:*Qk对选定限流电抗器进行热稳定校验:/r2r=752x2=11250(M)25取继电保护后备保护动作时间为最不利时间tpr=3.9s,tin=0.04s,t尸0.06s,计算时间为tk=tp「+tin+ta=3.9+0.04+0.06=4.0s>ls所以可忽略非周期分量热效应,只需取周期分量热效应,即Qk=Qpo严+10/2+厂QP120丄上XS=(12卅+10x12.782+12.782)x4。-653*几12校验计算结果与所选限流电抗器列表比较见表10.8。表10.8校验计算结果与所选限流电抗器表计算结果XKDGKL-10/3000-553^/咿足J-Igy(1)根据公式进行电晕电压校。式屮k——三相导体等边三介形布置取1,水平布置时取0.96; mr——导线表而粗糙系数,管型母线及单股导线取竹=0.98〜0.93,多股胶线取叫=0.87~0.83;8——空气相对密度;r导线半径(cm),a相间距离(cm),对于llOkV:°=2・2m,矩形母线为四如的曲率半径;其屮対于该llOkV变电站,结合实际变电站设计知:35kV:a=1.3m,10kV:d=0・75m。取k=0・96,mr=0.95,5=1,a=220cm,r=2.914cm,贝U:U=S4k^n0301ia•lg〒/84x0.96x0.95xlx2.914x1+.(Vlx2.914J0.301f220X82.914495.3UV显然:U0>UNS满足要求。10.7.2lOkV母线选择及校验(1)型号的选择当地常温t=+16°C时10kV侧主变进线最大持续工作电流为:hmax=/电抗器N=3000A归算到温度为t=+10°C时,则:maxgmax3000079=3797.46A选用矩形铝导体,查《电力工程电气设计手册》,10kV母线选用型号为LMY-125x10导体,其竖放载流量为4243A,集肽效应系数Kt-1.8o逅辽亘=394.16^?(2)热稳定校验87而S=3x125x10=3750mm2显然s>smin满足要求。10.8绝缘子及穿墙套管的选择10.8.1绝缘子(1)110kV耐张绝缘子 由于llOkV侧母线选择软导体,根据UN^UNS=110kV,选择8(LXP-70)户外耐张支柱绝缘了。(2)10kV支柱绝缘了取跨距L=lm,相间距离a=0.75m;根据UN>UNS=12kV,选择ZS—10/16户内棒形支柱绝缘子,主要参数为:绝缘子高度Hj=350mm,机械破坏负荷为16kN。动稳泄检验:Fmax=1.73K色几x10一7=1.73x1xx(49.39)2xl0~7=526.68N”a7500.6F&=0.6x16x10’=9600N可见F唤v0.6尸血满足要求。10.&2穿墙套管10kV进线通过架空线输送到屋内,lOkVll!线由电缆通过电缆沟送到屋外,因此只需考虑进线穿墙套管。根据UN>UNS=12kV,In=3000Ao查《电力工程电器设备手册》选择CWC-20/3000户外铜导体型穿墙套管,主要技术参数为:抗弯强度Fde=12.5kN,套管长度li=960mm,It=3s=40kA,t=3s。(1)根据Qk